Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.6/1851
Título: Métodos numéricos para resolução de equações de Lyapunov
Autor: Silva, Tiago Filipe Leitão
Palavras-chave: Métodos numéricos
Equações matriciais
Kronecker
Krylov
Data de Defesa: Out-2010
Editora: Universidade da Beira Interior
Resumo: O objectivo desta dissertação é descrever, analisar e aplicar alguns métodos numéricos para resolver a equação clássica de Lyapunov. Estudamos condições que garantem a solubilidade das equações e estabelecemos relações entre a fórmula contínua AX + X A* + Q = 0 e a fórmula discreta AX A* − X + Q = 0 . O produto de Kronecker é usado de modo a permitir representações de equações matriciais e o desenvolvimento de alguns métodos numéricos Analisamos algumas decomposições matriciais que vão ser utilizadas no desenvolvimento de alguns métodos numéricos directos nomeadamente Bartels-Stewart e Hessenberg-Schur. Por fim, os subespaço de Krylov e alguns processos de ortogonalização permitem desenvolver os métodos iterativos de Arnoldi e GMRES e os métodos directos de Ward e Kirrinnis.
URI: http://hdl.handle.net/10400.6/1851
Aparece nas colecções:FC - DM | Dissertações de Mestrado e Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Dissertação.pdf1,97 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.