Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.6/1877
Título: Aplicações harmónicas de superfícies de Riemann sobre espaços simétricos
Autor: Correia, Nuno Miguel Ferreira
Orientador: Pacheco, Rui Miguel Nobre Martins
Palavras-chave: Geometria diferencial
Grupos de lacetes
Aplicações harmónicas
Modelo de Grassmann
Data de Defesa: Mar-2012
Editora: Universidade da Beira Interior
Resumo: Descrevemos como a operação de somar um unitão surge através do método de Dorfmeister, Pedit e Wu (DPW) que permite obter aplicações harmónicas em espaços simétricos Riemannianos compactos a partir de certas 1-formas holomorfas. Exploramos este ponto de vista para investigar quais os unitões que preservam a propriedade do tipo nito das aplicações harmónicas. Em particular, provamos que o brado de Gauss de uma aplicação harmónica do tipo nito numa Grassmanniana também é do tipo nito. Provamos que qualquer aplicação harmónica da esfera de dimensão 2 num grupo de Lie compacto semi-simples de matrizes pode ser reduzida a uma constante usando as acções de revestimento singular, isto é, as singular dressing actions introduzidas por Bergvelt e Guest. Encontramos também geradores para o grupo dos lacetes racionais das representações fundamentais de Sp(n)C e SU(n)C: em ambos os casos a classe dos geradores é um pouco maior do que a classe de factores simples (lacetes racionais com um número mínimo de singularidades, cuja acção de revestimento pode ser calculada explicitamente). Estabelecemos fórmulas explícitas para as factorizações canónicas de soluções estendidas que correspondem a aplicações harmónicas com número de unitão nito no grupo de Lie excepcional G2 em termos do modelo Grassmanniano. É dada uma descrição dos geradores do referencial de Frenet para estas aplicações harmónicas. Em particular, mostramos que aplicações harmónicas da esfera de dimensão 2 em G2 correspondem a soluções de certos sistemas algébricos de equações quadráticas e cúbicas.
Peer review: yes
URI: http://hdl.handle.net/10400.6/1877
Aparece nas colecções:FC - DM | Dissertações de Mestrado e Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Tese_Doutoramento_Nuno_Correia_Matematica.pdf1,21 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.