Low Energy Nuclear Techniques and Microscopy in Surface Analysis of Materials

J. A. R. Pacheco de Carvalho1,2, C. F. R. Pacheco2 and A. D. Reis1,2

1. Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal.
2. APTEL Research Group, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal.

Techniques involving e.g. ion, electron and photon beams interacting with solid targets have been developed for surface analysis. The techniques give target information for depths near the surface. They are typically complementing. There exist both nuclear and non-nuclear techniques. Nuclear techniques, which are mainly non-destructive, permit investigations for a few microns close to the surface. Absolute values of concentrations of isotopes and elements are obtained. Their main applications have been scientific, technologic, in industry, arts, archaeology and medicine, using low energy MeV ion beams \cite{1-6}. Nuclear reaction analysis permits detection of isotopes with high sensitivities. We use ion-ion reactions and the energy analysis method. At a competently chosen energy of the incident ion beam, an energy spectrum is recorded of ions from reaction events occurring at several depths in the target. Θ_L is the laboratory detection angle, and Θ_R is the target rotation angle. Such spectra are computer predicted and compared to experimental data, giving target composition and concentration profile information \cite{4-7}. Elastic scattering is a special and important case. A computer program has been developed for flat targets \cite{4-6}. The non-flat target case is an extension. Microscopy has been applied e.g. to material and life sciences. Potentialities of the method are illustrated by 18O(p,α)15N and 12C(d,p)13C reactions and elastic scattering of (4He)$^+$ ions, for three types of samples. SEM microscopy is used as a complementary technique for surface imaging.

Experimental details have been given \cite{4}. Charged particle spectra were acquired from samples: 1) S1, a thick oxidized steel sample, prepared by high temperature oxidation of austenitic steel in C18O\textsubscript{2} gas; weight gain data gave a 4.2 µm oxide thickness; a uniform step concentration profile of 18O was anticipated; the oxide was satisfactorily flat. 2) S2, a thick pyrolitic graphite target, prepared by CH\textsubscript{4} cracking at 2200 ºC and deposition on a graphite substrate; the surface of the sample was plane. 3) S3, a thick flat sapphire sample (Al\textsubscript{2}O\textsubscript{3}); step concentration profiles of Al and O were foreseen.

Spectral data were obtained at $\Theta_L=165^\circ$ from: 1) S1, for $\Theta_R=0^\circ$, using the 18O(p,α)15N reaction at $E_p=1.78$ MeV, an energy slightly above the resonance energy at 1.766 MeV in the differential cross section. 2) S2, using the 12C(d,p)13C reaction at $E_d=1.40$ MeV. 3) S3, for $\Theta_R=0^\circ$, using a (4He)$^+$ ion beam at $E_a=1.5$ MeV. Published nuclear data, namely for reaction differential cross section and stopping power, were used in the computer predictions. For the 12C(d,p)13C reaction, reported differential cross-section data were used, as shown in Fig. 2 \cite{4}. For elastic scattering, Rutherford differential cross-sections were included. Good fits were obtained. For S1, a uniform concentration profile of 18O was found with $X_1=4.4$ µm (Fig. 1), close to the expectation. For S2, a probed depth with $X_1=10$ µm and uniform concentration of 12C were found (Fig. 3). For S3, uniform step concentration profiles were found for Al and O with $X_1=0.53$ µm and $X_1=0.23$ µm, respectively (Fig. 4). The present work has shown high potentialities of the combined use of nuclear techniques and microscopy, as highly powerful analytical tools for non-destructive surface analysis of materials \cite{8}.
References:
[8] Supports from Universidade da Beira Interior and FCT (Fundação para a Ciência e a Tecnologia)/PEst-OE-FIS/UI0524/2014 (Projecto Estratégico-UI524-2014) are acknowledged.

Figure 1. Computed fit to the 18O(p,α_0)15N reaction spectrum of the C18O$_2$ oxidized steel target, S1, for E_p=1.78 MeV, Θ_L=165°.

Figure 2. Differential cross section data of the 12C(d,p_0)13C reaction at Θ_L=165°.

Figure 3. Computed fit to the 12C(d,p_0)13C reaction data from the pyrolytic graphite target, S2, for E_d=1.40 MeV, Θ_L=165°.

Figure 4. Computed fit to the elastic scattering spectrum from the sapphire target, S3, for E_{α}=1.5 MeV, Θ_L=165°.