Review

Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art

Tiago M. Barbosa a,e,* , José A. Bragada a,e, Víctor M. Reis b,e, Daniel A. Marinho c,e, Carlos Carvalho d,e, António J. Silva b,e

a Polytechnic Institute of Bragança, Portugal
b University of Trás-os-Montes and Alto Douro, Portugal
c University of Beira Interior, Portugal
d Higher Institute of Maia, Portugal
e Research Centre in Sport, Health and Human Development, Portugal

Received 24 June 2008; received in revised form 23 December 2008; accepted 22 January 2009

Abstract

The biophysical determinants related to swimming performance are one of the most attractive topics within swimming science. The aim of this paper was to do an update of the “state of art” about the interplay between performance, energetic and biomechanics in competitive swimming. Throughout the manuscript some recent highlights are described: (i) the relationship between swimmer’s segmental kinematics (segmental velocities, stroke length, stroke frequency, stroke index and coordination index) and his center of mass kinematics (swimming velocity and speed fluctuation); (ii) the relationships between energetic (energy expenditure and energy cost) and swimmer’s kinematics; and (iii) the prediction of swimming performance derived from above mentioned parameters.

Keywords: Swimming; Energy cost; Kinematics; Motor coordination; Performance

Contents

1. Introduction .. 262
2. Relationships between segmental kinematics and center of mass kinematics .. 263
3. Relationships between energetics and swimmer’s kinematics .. 265
4. Predicting swimming performance from energetics and swimmer’s kinematics .. 266
5. Conclusion ... 267
Acknowledgment ... 267
References ... 267

1. Introduction

The goal of a competitive swimmer is to travel a given distance with the minimum time. With that aim, the swimmer must be animated to his maximal velocity, which can be expressed as 1,2:

\[v_{\text{max}} = \frac{E_{\text{tot-max}}}{C} \]

(1)

where \(v_{\text{max}}\) represents maximal swimming velocity \((\text{m s}^{-1})\), \(E_{\text{tot-max}}\) maximal total energy expenditure corrected for body mass \((\text{ml O}_2 \text{ kg}^{-1} \text{ min}^{-1})\) and \(C\) energy cost \((\text{J kg}^{-1} \text{ m}^{-1})\). \(C\) is converted into the SI units since 1 ml O\(_2\) is equivalent to 20.1 J. The maximal total energy expenditure can be com-
puted based on the contribution of the aerobic, anaerobic lactic and anaerobic alactic systems. However, in competitive swimming, the contribution rate of the anaerobic alactic system is quite low, once the majority of the events have lastly more than 1 min.3 Therefore, the main energetic resources come from the other two systems and can be calculated as: 2,4

\[\dot{E}_{\text{tot}} = \text{VO}_2 \text{net} + (\alpha \cdot \delta^{-1}) \cdot [\text{La}^-] \text{net} \]

(2)

where \(\dot{E}_{\text{tot}} \) represents maximal total energy expenditure corrected for body mass, \(\text{VO}_2 \text{net} \) the net oxygen uptake corrected for body mass (difference between the value measured at the end of the task and the rest value), \(\alpha \cdot \delta^{-1} \) the constant value to convert lactate units in oxygen uptake units and \([\text{La}^-] \text{net}\) the blood lactate net corrected for body mass (difference between the value measured in the end of the task and the rest value). The \(\alpha \cdot \delta^{-1} \) parameter, used as \(\text{VO}_2 \) equivalents, is assumed as being 2.7 ml O\textsubscript{2} kg-1 mmol-1 in competitive swimming. The 2.7 value of \(\alpha \cdot \delta^{-1} \) is valid for venous4 and arterial5 blood collections.

The \(C \) is defined as the total energy expenditure required to displace the body over a given unit of distance.6–8 \(C \) is related to mechanical efficiency and to mechanical work:

\[C = \frac{w_{\text{tot}}}{\eta_o} \]

(3)

where \(C \) represents energy cost, \(w_{\text{tot}} \) total mechanical work per unit of distance and \(\eta_o \) overall efficiency. A fraction of the total mechanical work has to be used to accelerate and decelerate the limbs with respect to the center of mass (internal mechanical work) and another fraction is wasted to accelerate water (transfer of kinetics energy into water). Propulsive efficiency assumes an important role and is given as:1,9:

\[\eta_p = \frac{w_d}{w_{\text{tot}}} \]

(4)

where \(\eta_p \) represents propulsive efficiency, \(w_{\text{tot}} \) total mechanical work and \(w_d \) mechanical work to overcome drag force.

Eq. (4) can be detailed as:10:

\[\eta_p = \frac{w_d}{w_d + w_k} \]

(5)

where \(w_d \) represents mechanical work used beneficially to overcome drag, \(w_k \) mechanical work lost in giving water a kinetic energy change. Using the MAD-system, \(\eta_p \) can be measured as:10:

\[\eta_p = \frac{v^3 \text{free}}{v^3 \text{MAD}} \]

(6)

Recently it was reported \(\eta_p \) close to 0.65–0.81 range (mean of 0.73) for expert swimmers having a sprint \(v \) of 1.64 m s-1.11 Meanwhile, highly trained triathletes have lower \(\eta_p \) (mean of 0.44 ± 0.03).12

Combining Eqs. (3) and (4):

\[C = \left(\frac{w_{\text{tot}}}{\eta_p} \right) \eta_o^{-1} \]

(7)

Therefore, the swimmer’s technical ability (the subject propelling efficiency plus the capability to overcome drag) and the overall efficiency affect strongly the \(C \) at a given \(v \).

One of the main goals of Sports Biomechanics is to characterise the motor pattern of practitioners and to improve its efficiency in order to enhance performance. In competitive swimming, performance is related to the energetic profile of the swimmer (Eq. (2)) and his technique level (Eq. (5)). It is clear there exist significant relationships between the bioenergetical profile, biomechanical characteristics and swimming performance. The intervention in such constrains in order to improve performance is defined as a “biophysical intervention”.

The aim of this paper was to perform an update of the “state of the art” about the relationships between performance, energetics and biomechanics in competitive swimming. The purpose was to describe as much as possible the relationships in all four competitive strokes. It must be stressed that the percentage of citations throughout the manuscript, according to swim strokes evaluated, is somewhat proportional to the one existing in the literature.

2. Relationships between segmental kinematics and center of mass kinematics

A competitive swimmer tries to travel a given distance as fast as possible. So, mean swimming velocity is the best measure for swimming performance13,14:

\[\bar{v} = \text{SL} \cdot SF \]

(8)

where \(v \) represents mean swimming velocity, \(\text{SL} \) stroke length and \(SF \) stroke frequency.

The relationship between \(\text{SL} \), \(SF \), \(v \) and performance according to the event swam (race distance and stroke technique) is one of the major points of interests in biomechanical research. For a given distance and gender, Freestyle is the fastest stroke, followed by Butterfly, Backstroke and Breaststroke.14–16 Throughout an event, the decrease of \(v \) is related to the decrease of \(\text{SL} \) in all swim strokes.14,17 So, if a swimmer does not have a long \(\text{SL} \), there is less latitude for “shorting” it and a great dependence on \(SF \) to swim faster.13 Regarding the spatial–temporal parameters in 100 m18,19 and in the 200 m19 distances, at Freestyle high-level swimmers presented higher and more stable data throughout the race. Nevertheless, an intra-individual \(SF - \bar{v} \) curve is adopted.14

For inter-lap change, both genders demonstrated a “zig-zag” pattern for \(SF \), but more pronounced in male swimmers.20 \(SF \) achieved the maximum during the last lap in both genders.20 However, \(SF \) variability was lower in Front Crawl than in Backstroke and in Olympic swimmers than in national level swimmers.21

Comparing race distances, ranging from 100 m to 1500 m13,14 or swim paces from 50 m to 200 m22 and from
50 m to 400 m,23 in longer events, all stroke parameters had a tendency to decrease. When evaluating lower distance ranges (100 m versus 200 m) some researchers described contradictory results. Chollet et al.24 showed that in high-level swimmers, in the four swim strokes, \(SL \) decreased from 100 m to 200 m, but \(SF \) did not changed between the event in Backstroke and Front Crawl. \(SL \) decreased from 100 m to 200 m in Butterfly, while increased in Breaststroke.24 According to competitive level, for a given event, high-level swimmers present increased \(v \) and \(SL \) than lower-level swimmers.14–16,22,23

Increases or decreases in \(v \) are determined by combined increases or decreases in \(SF \) and \(SL \), respectively.2,11,14,25 Experimental data reported polynomial relationships between \(v \) and \(SF \), as well as, between \(v \) and \(SL \).2,26–28 Moreover, partial correlations between \(v \) and \(SF \) controlling the effect of the \(SL \) and between \(v \) and \(SL \) controlling the effect of \(SF \) were positive and significant in all swimming strokes.2 The non-linear relationship may have two explanations: (i) the decline in \(v \) and the changes in \(SF \) and \(SL \) combination, reflects the development of local fatigue, leading to a reduction in mechanical power output and thereby both \(v \) and \(SF \) decrease;11,29 (ii) neuromuscular activation of several muscles in a multi-segment and multi-joint movement, as it is the case of swimming, follows the force–velocity relationship pattern for a single joint system. In this sense, in order to achieve a given output, an optimal number of motor units must be recruited.30 Indeed, for every combination of participant and form of locomotion considered, the relationships of \(SF \) versus \(v \) and \(SL \) versus \(v \) had the same basic characteristics.31

High stroke index (\(SI \)) values were strongly associated with a low \(C \).32 In this sense, \(SI \) can also be used as overall swimming efficiency estimation. \(SI \) is computed as:

\[
SI = SL \cdot \bar{\bar{v}} \tag{9}
\]

Predictability of \(VO_{2\ max} \) at Freestyle increased significantly when \(SI \) was included in the multiple regression analysis of a 386.8 m swim.32 \(SI \) was higher in international level swimmers than in national level ones in all swim strokes.33 Freestyle has the highest \(SI \), followed by Backstroke, Butterfly and Breaststroke.33 \(SI \) decreased from longer to shorter events.33 In all events, \(SI \) is higher in male than female swimmers, independently of their competitive level.33 Nevertheless, \(C \) and \(SI \) are dependent from \(v \). Statistically this is considered as a multicolinearity phenomena, imposing some limitations to \(SI \) interpretation.29

The study of the intra-cyclic variation of the horizontal velocity of the center of mass (\(dV \)) within a stroke cycle is a feasible way to analyse the overall swimmers mechanics. \(dV \) analysis allows the: (i) identification of critical events in different phases of the cycle; (ii) collection of relevant data for practitioners; and (iii) the discrimination of swimmer’s competitive level. \(dV \) can be computed as:

\[
dV = \frac{\sqrt{\sum (v_i - \bar{v})^2 F_i/n} \cdot 100}{\sum v_i F_i/n} \tag{10}
\]

where \(dV \) represents intra-cyclic variation of the horizontal velocity of the center of mass, \(v_i \) mean swimming velocity, \(F_i \) absolute frequency and \(n \) is the number of observations.

Comparing the \(dV \) between the four strokes, Butterfly and Breaststroke present a higher variation than Freestyle and Backstroke when measured with mechanical methods34 or image-digitise methods.35 Swim strokes with higher intra-cyclic variations of mechanical body impulse also have higher \(dV \). Females generally had a lower \(dV \) than male swimmers.36,37 Gender differences are related to anthropometric parameters and mechanical power output.37

The relationship between \(dV \) and \(v \) is a conflicting issue among researchers: (i) there is no interplay between \(dV \) and \(v \);36,38 (ii) decreases of the \(dV \) are associated with \(v \) increases;36,39,40 (iii) increases of the \(dV \) are associated with the acceleration capacity of elite swimmers;22 and (iv) a better adjustment of 2nd order polynomial function is considered, where increasing \(v \) promoted a \(dV \) increasing up to a given value and then a decrease.35 It can be hypothesised that the positive relationship may be frequent in shorter events, while negative ones happen in longer events. However, the non-linear relationship is also described in regular bases for human terrestrial locomotion techniques.41

The \(v \) is also influenced by mode of inter-limb coordination (arm-stroke phases, legs and breathing). Inter-limb coordination is assessed by the time gap between the: (i) propulsion of the two arms, in alternated strokes, and is called as index of coordination \((IdC) \);18,42 (ii) arm and leg propulsion, in simultaneous strokes and is defined as total time gap \((TTG) \).23

For Freestyle and Backstroke, when \(IdC \) is: (i) lower than 0%, is called “catch-up”; (ii) equal to 0%, is called “opposition”; and (iii) higher than 0%, is called “superposition”. For Breaststroke and Butterfly stroke, arm–leg coordination is defined by the \(TTG \) (which is the sum of the different time gaps between arm and leg actions). A recent study showed that the change between \(v \) and coordination also followed a polynomial relationship as other stroke parameters.28

\(IdC/TTG \) is influenced by: (i) environmental constraints, e.g., active drag and \(v \);38,43 (ii) task constraints, e.g., pace or \(SF \) imposed, goal, instruction or rules of the task43,44; and (iii) organismic constraints, e.g., the swimmers speciality,43,44 competitive level,43,44 anthropometric or disability characteristics,43–45 and gender.18,43,46

For elite swimmers, high active drag at high \(v \) induces a high \(IdC \). With decreasing \(v \), swimmers tend to adopt a lower \(IdC \) (catch-up coordination) or higher \(TTG \).18,23,37,47 High-level swimmers are characterised by high and more stable \(IdC \) (superposition coordination) or lower \(TTG \).18,23,43,47 Compared according to race paces, elite men showed higher
IdC than elite women.23,37 When compared according to v, elite men have a greater catch-up coordination than elite women.46 These differences are the result of anthropometric and muscular power differences between genders. According to race distance, IdC increases and TTG decreases with shorter events.23,37,47 Relating IdC or TTG with dV, it was verified that there is no significant change in the last one with increasing swim pace.22,37,38 It seems that adaptations of propulsive phase duration and IdC ensure dV stability.

Another approach is to understand the influence of the segmental kinematics and coordination with v and dV. The segmental variables that better predict the dV of butterfliers were mainly those related to the end of the underwater path of the arm-stroke48,49 and the second downbeat.49 The last phase of the underwater path with a high hand’s velocity and the second downbeat are important to reduce the dV and increase the v. There are no published data for the remaining swimming strokes about this issue.

Another issue related to motor pattern of the limbs is the different forms of propulsive forces during steady flow (drag and lift forces) and unsteady flows (vortex). Antero-posterior patters are related to a higher contribution of propulsive drag to overall propulsion. Diagonal patterns are related to a higher contribution of propulsive drag and lift forces) and unsteady flows (vortex). Antero-posterior patterns are related to a higher contribution of propulsive drag to overall propulsion. Days-patter are related to a higher contribution of propulsive drag and lift forces. Now-a-days, most of the relevant research about this issue is done based in: (i) experimental methods, e.g., “particle image velocimetry”50 or (ii) numerical methods, e.g., “computer fluid dynamics”.51

3. Relationships between energetics and swimmer’s kinematics

It is consensual in the literature that \(\dot{E}_{tot} \) increases with increasing v.7,8,29,35,52–54 For a given v, and by this order, the Butterfly and the Breaststroke were the least economical strokes, the Backstroke and the Freestyle being the most economical ones.52 However, in a recent paper for all the selected velocities, Freestyle was the most economic stroke, followed by Backstroke, Butterfly and Breaststroke.53 An obvious distinction between alternated and simultaneous techniques is clear. This is related with the higher variation of the swimmer’s impulse along the stroke cycle in each technique. Higher intra-cyclic variations of the impulse induce an additional mechanical work and, consequently, higher \(\dot{E}_{tot} \).

The main question is related to the type of relationship that is established between \(\dot{E}_{tot} \) and v. Some authors suggested a linear relationship8,29,35,53,54 while others a non-linear one.55 Drag force is a major determinant of the C in swimming.27 At constant v, the swimmer is submitted to drag force described as56:

\[
D = K v^2 \tag{11}
\]

where D represents drag force, K a drag factor (including several other variables from fluid mechanics) and v swimming velocity. To overcome the drag force, swimmer must generate a certain amount of work per stroke (\(w_d \)):

\[
w_d = D \cdot SL = K \cdot v^2 \cdot SL \tag{12}
\]

The rate at which this work is produced by the swimmer equals the power necessary to overcome drag (Pd), so11:

\[
P_d = w_d SF \tag{13}
\]

Combining Eqs. (12) and (13):

\[
P_d = K \cdot v^2 \cdot SL \cdot SF = K \cdot v^3 \tag{14}
\]

So, the theoretically expected relationship should be cubic, once energy output run in parallel with power, and power is a function of the velocity cubed.55

However, several manuscripts reported a better adjustment when linear approaches were employed.8,29,35,53,54 The explanation for this fact can be: (i) an increasing efficiency with increasing v up to a given value55; (ii) the small range of v analysed. Performing an infinitesimal analysis of a non-linear function in a reduced range of velocities, the linear approach fits better5; and (iii) the limited number of subjects evaluated.

It is reported on a regular basis that C increases with increasing SF.2,29,57 At Backstroke, Breaststroke and Butterfly stroke, increases in SF were associated with increases in C, even when controlling v.2 It was suggested that, a significant relationship between SF and \(\eta_p \) exists since57:

\[
\eta_p = \left(\frac{v \cdot 0.9}{2 \pi \cdot SF \cdot l} \right) \frac{2}{\pi} \tag{15}
\]

where \(\eta_p \) represents propulsive efficiency, v swimming velocity, SF stroke frequency and l shoulder to hand average distance. It must be stressed that Eq. (15) can only be applied to estimate \(\eta_p \) in Front Crawl. This equation was obtained by modeling the arm-stroke as a paddle wheel motion, an assumption that cannot be applied to the remaining swimming techniques. Indeed, the first authors which have presented this calculation were Martin et al.58 They have proposed a simplified calculation of the hand speed, considering the arm as a rigid segment (ignoring the elbow flexion) and having a constant underwater hand speed (ignoring the glide and catch phase).

A theoretical relationship between C and \(\eta_p \), with SL is also considered59:

\[
SL = \left(\frac{\eta_p \cdot w}{D \cdot SF^2} \right)^{1/3} \tag{16}
\]

where SL represents stroke length, \(\eta_p \) propulsive efficiency, w mechanical work per stroke cycle, D drag force and SF stroke frequency. Nevertheless, it is not evident from experimental data that the decrease in C is associated with increasing SL.2,7,8,57

Another studied issue is the dependence of C from dV. If a swimmer would be able to displace with a uniform move-
ment:

\[v = v_0 = \text{constant} \] (17)

According to Eq. (14), in that case the mechanical work performed by a swimmer within every stroke is:

\[w_d = K \cdot v^3 \cdot T = w \cdot \text{constant} \] (18)

where \(w_d \) represents mechanical work, \(K \) drag factor, \(v \) swimming velocity and \(T \) duration of a stroke cycle. Theoretically, more economical swimmers have a constant \(dV \). However, the swimmer does not displace at a constant \(v \). The variations in the arms, legs and trunk actions lead to \(v \) variations, within every stroke cycle:

\[v = v_0 + \Delta v(t) \] (19)

In such case, the \(w_d \) can be described as a combination of Eqs. (14) and (19):

\[w_d = \int_0^T K \left[v_0 + \Delta v(t) \right]^3 dt \] (20)

A comparison between the mechanical work performed while swimming at constant \(v \) and swimming with fluctuating \(v \) is described as \(^{60}\):

\[\frac{w_d}{w_d-\text{constant}} = 1 + \frac{3}{T} \int_0^T \left[\frac{\Delta v(t)}{v_0} \right] dt + \frac{3}{T} \int_0^T \left[\frac{\Delta v(t)}{v_0} \right]^2 dt + \frac{1}{T} \int_0^T \left[\frac{\Delta v(t)}{v_0} \right]^3 dt \] (21)

Eq. (18) shows that every change in \(v \) results in a mechanical work per stroke increase. Moreover, theoretically, changes in \(v \) of 10\%, within a stroke cycle, results in an additional work demand of about 3\%. \(^{60}\) A higher \(dV \) leads to an increase in \(C \) in order to overcome inertia and drag force. \(^{60,61}\) Whereas these movements are necessary to displace the swimmer forward, they include elements, which add up to the necessary mechanical work done by himself, affecting swimming efficiency. \(^{61,62}\)

From experimental data, it can also be concluded that a higher \(C \) is related with high \(dV \) in all swimming strokes. \(^{8,35,53,63,64}\) A couple of studies did not observe significant relationships at Freestyle at slow \(v \) and Breaststroke. \(^{35}\) However, when partial correlations between \(C \) and \(dV \), controlling the effect of the \(v \), were computed, significant relationships were obtained for all techniques. \(^{35}\) The non-significant relationships described above can be explained by: (i) the protocols used to assess biomechanics and energetics were applied in different moments; \(^{85}\) (ii) the relationship was established between the \(C \) and the hip and not the center of mass \(dV \); \(^{63}\) and (iii) the effect of \(v \), which also interplays with \(dV \), was not taken in account. \(^{35,63}\) However, comprehensive knowledge about this relationship with other competitive level rather than national and/or international level swimmers is rare.

At this moment one pilot study with a single female swimmer of high-level related \(C \) with \(IdC \) at Freestyle. \(IdC \) and \(C \) were correlated with a very high-level. \(^{65}\) With increasing swim pace, \(IdC \) switched from “catch-up coordination” to “opposition coordination” when reaching near the \(VO_2\text{max} \). Nevertheless, such relationship should be evaluated in different swim strokes, with larger samples and with different competitive levels.

4. Predicting swimming performance from energetics and swimmer’s kinematics

In elite swimmers, \(SL \)\(^{18,22,44,64}\) and \(\eta_p \)\(^{12}\) are higher and active drag \(^{27}\) is lower when compared to other competitive levels. This can be related to a significant relationship between \(\eta_p \), mechanical work per stroke cycle, drag force and stroke mechanics,\(^{11}\) as described in Eq. (13).

The kinematics of elite swimmers is quite different from other competitive levels. Elite butterflies presented a lower angle between trunk and horizontal plane; Elite backstroke’s and freestylers have a symmetrical body roll; Elite breaststrokers have appropriate timing for arms and legs recovery; Elite freestylers have higher elbow position during the catch.\(^{66}\)

For a given event, high-level swimmers present an increased \(v \) and \(SL \) than lower-level swimmers.\(^{14–16,22,23}\) \(SL \) is also higher in international swimmers than in national level.\(^{33}\) Empirical data and speculations are made that elite swimmers have a lower \(dV \).\(^{35,36}\) High-level swimmers are characterised by high and more stable \(IdC \) (superposition coordination) for alternated\(^{18,43,44}\) and lower \(TTG \) for simultaneous strokes.\(^{23,43,47}\)

High-level swimmers have a better capacity to maximise their energy input (\(E_{\text{tot-max}} \), \(VO_2\text{max} \), [\(\text{La}^- \)] production, minimal velocity at \(VO_2\text{max} \)) than lower-level swimmers.\(^{54}\) Moreover, high-level swimmers are more economical and efficient (\(C \), \(S \) at a given \(v \), \(\eta_p \)) than lower-level swimmers.\(^{12,54}\) All this data is related to Freestyle and it seems that comprehensive knowledge to remain strokes is non-existent.

Another possibility is to develop statistical models that are able to identify the best predictors of swimming performance.\(^{67}\) It is consensual that elite swimmers are more economical for a given \(v \).\(^{54}\) Several authors reported that peak \(VO_2 \) or \(VO_2\text{max} \) was the best performance predictor.\(^{32,63}\) It was verified that for the 386.8 m distance the best predictors were the \(SL \) and the \(VO_2\text{max} \) corrected for lean mass.\(^{32}\)

It is a recent approach to solve complex problems such as performance modeling. E.g., modeling the 400 m Freestyle performance in young male swimmers the estimation error was \(7 \pm 7.8\% \) and for the 200 m Medley performance \(1.7 \pm 13.3\% \).\(^{68}\)

The purpose of cluster analysis is to discover a system of organising observations, for instance, subjects according to swimming performance. This is done based on the fact that members of the groups share properties in common (e.g.,
energetic profile, biomechanics behaviour or inter-limb coordination strategies). The closest described in the literature is a research about inter-individual variability to determine different profiles for similar or different performances. 69

5. Conclusion

The development of biomechanical models explaining the relationships established between the variables here presented can be a feasible way to promote technical evaluation, with relevant information for practitioners. From what was discussed in the previous sections, it is possible to attempt a description of the relationships between all of them (Fig. 1).

Swimming performance is dependent from the energetic profile and this one from the biomechanical behaviour. C and \dot{E}_{tot} have a moderate–good prediction capacity of swimming performance. On the other hand, those variables are dependent from the swimmer’s technical level. An overall quantification of the swimmer’s technical level can be done examining his v or dV. Both of them are the balanced result from propulsive and drag forces. The v and dV behaviour is the direct and indirect result from stroke mechanics and segmental velocities. Finally, these last ones are related to motor control phenomena as inter-limb coordination, quantified with TTG and IdC. So, the physiologic, motor control or biomechanical knowledge and approaches, once isolated, are not sufficient for enhancement swimming performance. Individual adaptations based on interacting constraints should have more emphasis in order to understand performance.

Nevertheless, important steps must be taken in the future to understand more deeply those relationships, e.g.: (i) the development of studies about swimming performance and bioenergetical profile in a large scale, including swimmers of different competitive levels, swimming techniques and gender; (ii) to explore deeply the interplay between dV, IdC, TTG and v in a range of speeds as large as possible; (iii) to understand the relationships between SF and SL with segmental kinematics; (iv) to bring new highlights about the role of neuromuscular activity in the segmental kinematics; (v) to perform meta-analysis about performance, energetics and biomechanics; (vi) to study the interplay between performance, energetics and biomechanics based on longitudinal data; and (vii) analyse individual adaptations instead of pooled data to understand swimming performance according to interacting constraints.

As practical implications, it can be concluded that: (i) swimming performance is strongly related to energetic profile and this one to technical level; (ii) high-level swimmers are more economical; (iii) lower speed fluctuation, higher stroke length and superposition arm’s coordination are important to increase swimming economy at given swimming velocity; and (iv) high segmental velocities in the most propulsive phases of the stroke cycle and lower drag force in the less propulsive ones are determinants of higher swimming velocity and lower speed fluctuation.

Acknowledgment

No financial assistance was received to complete this project.

References