Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.6/4778
Título: Generalized Trichotomies: robustness and global and local invariant manifolds
Autor: Costa, Cristina Maria Gomes Tomás da
Orientador: Bento, António Jorge Gomes
Palavras-chave: Equações diferenciais ordinárias
Tricotomias generalizadas
Àlgebras de Banach
Data de Defesa: Fev-2018
Resumo: In a Banach space, given a differential equation v′(t) = A(t)v(t), with an initial condition v(s) = vs and that admits a generalized trichotomy, we studied which type of conditions we need to impose to the linear perturbations B so that v′(t) = [A(t) + B(t)] v(t) continues to admit a generalized trichotomy, that is, we studied the robustness of generalized trichotomies. In the same way, it was also the aim of our work the study of a differential equation with another type of nonlinear perturbations, v′(t) = A(t)v(t) + f(t, v). We sought conditions to impose on the function f so that the new perturbed equation would admit a global Lipschitz invariant manifold as well as the necessary conditions for the existence of local Lipschitz invariant manifolds.
Num espaço de Banach, dada uma equação diferencial v′(t) = A(t)v(t), sujeita a uma condição inicial v(s) = vs e que admite uma tricotomia generalizada, estudámos o tipo de condições a impor às perturbações lineares B de modo que a equação v′(t) = [A(t) + B(t)] v(t) ainda admita uma tricotomia generalizada, ou seja, estudámos a robustez das tricotomias generalizadas. Da mesma forma, foi também objecto deste trabalho, o estudo de uma equação diferencial com outro tipo de perturbações não lineares, v′(t) = A(t)v(t) + f(t, v). Procurámos condições necessárias a impor à função f por forma a que a nova equação perturbada admitisse uma variedade invariante Lipschitz global, bem como as condições necessárias para a existência de variedades invariantes Lipschitz locais.
URI: http://hdl.handle.net/10400.6/4778
Designação: Doutoramento em Matemática e Aplicações
Aparece nas colecções:FC - DM | Dissertações de Mestrado e Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TD_Maria_Costa.pdf916,54 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.