Gamboa, Pedro VieiraSilva, Filipe Miguel JesusMarques, Ricardo Jorge Rodrigues2024-01-222024-01-222023-11-202023-10-07http://hdl.handle.net/10400.6/14097This dissertation contributes to one of the projects being developed by the Advanced Air Mobility (AAM) business unit of the Portuguese Centre of Engineering and Product Development (CEiiA). The project’s objective is to develop a modular vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) capable of performing long-range missions and operating in urban environments through a removable wing system. The present work details the preliminary aerodynamic and structural development of a wing that can be integrated with the multirotor developed by the AAM business unit. A literature review was conducted on topics such as aircraft design, aircraft structures, composite structures, and VTOL UAV technologies. This was followed by the conceptual design of the wing, which takes into account the requirements of the business unit and the constraints imposed by the multirotor’s geometry to create several different configurations. The feasible configurations were evaluated and subsequently narrowed down until a baseline design was established. An airfoil selection, an assessment of the component’s arrangement, the design of an aerodynamic wing model, and a stability analysis were performed using the Flow5 software. All of these parameters were determined and evaluated based on examples or typical restrictions found in the literature, with the exception of the wing design, which required an iterative method that was defined specifically for this case. A thrust-to-weight ratio constraint analysis was employed to select an appropriate motor and propeller for the forward flight propulsive system (FFPS). Additionally, a performance analysis was conducted considering the aerodynamic characteristics of the wing, the mission profile, the selected battery, and the characteristics of the FFPS to determine the range and endurance of the UAV. A computer-aided design model of the wing and its internal structure was developed using SolidWorks, based on the dimensions of the aerodynamic wing model and the structural requirements of the wing. A material selection, an assessment of the stacking sequence of the component’s laminates, and a structural analysis of the wing’s structure were performed using Ansys. The structural analyses were conducted using Finite Element Analysis and using the Composite Failure tool to obtain solutions. The research conducted in this dissertation led to the development of a six-meter wingspan flying wing, primarily made of carbon fiber and foam-cored carbon fiber sandwiches, specifically designed to be integrated with a multirotor. The structure of the wing has a total mass of approximately 8.5 kg and is capable of withstanding an ultimate load factor 6.75 times greater than the vertical aerodynamic force exerted on the wing during normal cruise conditions. With the wing attached and disregarding the drag of the exposed frame, the UAV is theoretically capable of performing 82.97 km missions over a duration of 0.92 h when fully loaded, and 105.13 km missions over a duration of 1.32 h when empty.Esta dissertação contribui para um dos projetos que se encontra em desenvolvimento pelo departamento de Mobilidade Aérea Avançada (AAM) do Centro Português de Engenharia e Desenvolvimento de Produtos (CEiiA). O objetivo do projeto é desenvolver um veículo aéreo não tripulado (UAV) de descolagem e aterragem vertical (VTOL) capaz de realizar missões de longo alcance e operar em ambientes urbanos através de um sistema de asas removíveis. No presente trabalho são detalhados o desenvolvimento preliminar aerodinâmico e estrutural de uma asa que tem como propósito ser integrada com o multirotor desenvolvido pela AAM. Foi realizada uma revisão bibliográfica sobre temas como design de aeronaves, estruturas de aeronaves, estruturas em compósitos e tecnologias UAV VTOL. Isto foi seguido pelo design conceptual de uma asa, onde são considerados os requisitos do departamento e as restrições impostas pela geometria do multirotor para determinar possíveis configurações. As configurações mais viáveis foram avaliadas e, através de um processo de seleção, um design base foi estabelecido. Utilizando o software Flow5, foi realizada uma seleção de perfis, uma determinação da disposição dos componentes, o design de um modelo aerodinâmico da asa e uma análise de estabilidade da mesma. Todos estes parâmetros foram determinados e avaliados com base em exemplos ou restrições típicas encontradas na literatura, com a exceção do design da asa, que exigiu um método iterativo que foi definido especificamente para este caso. Foi realizada uma análise da relação entre a tração e peso para selecionar o motor e a hélice mais adequados para o sistema propulsivo responsável pelo voo horizontal (FFPS). Além disso, foi também realizada uma análise de desempenho considerando as características aerodinâmicas da asa, o perfil da missão, a bateria selecionada e as características do FFPS para determinar o alcance e o tempo de voo do UAV. Modelos CAD da asa e da estrutura interna foram desenvolvidos através do software SolidWorks, com base nas dimensões do modelo aerodinâmico da asa e nos requisitos estruturais. Seleção de materiais, avaliações do empilhamento aplicado aos componentes e análises estruturais à estrutura da asa foram realizadas usando o software Ansys. As análises estruturais foram realizadas por análise de elementos finitos e usando a ferramenta Composite Failure para obter resultados. O trabalho realizado nesta dissertação levou ao desenvolvimento de uma asa voadora com uma envergadura de seis metros, feita principalmente de fibra de carbono e sanduíches de espuma revestidos com fibra de carbono, projetada para ser integrada com um multirotor específico. A estrutura da asa tem uma massa total de aproximadamente 8.5 kg e é capaz de suportar um fator de carga máximo 6.75 vezes superior à força vertical aerodinâmica exercida na asa durante condições normais de voo cruzeiro. Com a asa montada e desprezando o arrasto da estrutura do multirotor que se encontra exposta, o UAV é teoricamente capaz de realizar missões de 82.97 km num período de tempo de 0.92 h quando totalmente carregado, e missões de 105.13 km num período de tempo de 1.32 h quando vazio.engFalha em CompósitosAnálise de EstabilidadeAnálise por Elementos FinitosCad de- SignDesign Aerodinâmico de AsasEstruturas em CompósitoSeleção de Perfís AlaresSequência de EmpilhamentoDesign of a Flying Wing to Convert an Existing Multirotor UAV into a VTOL Aircraftmaster thesis203462688