Bousson, KouamanaBelizário, Pedro Manuel Coelho2023-05-122023-05-122023-01-122022-11-18http://hdl.handle.net/10400.6/13320Nonlinear control has become increasingly more used over the last few decades, mainly due to the research and development of better analysis tools, that can simulate real-world problems, which are almost always, nonlinear. Nonlinear controllers have the advantage of being more accurate and efficient when dealing with complex scenarios, such as orbit control, satellite rendezvous, or attitude control, compared to linear ones. However, common nonlinear control techniques require having a high-fidelity model, which is often not the case, thereby limiting their use. Additionally, rapid advancements in the field of machine learning have raised the possibility of using tools like neural networks to learn the dynamics of nonlinear systems in an effort to compute control inputs without the need to solve the highly complex mathematical equations that some nonlinear controllers require to solve, in real-time, therefore bypassing the need of higher computational power, which can reduce costs and weight, in space missions. This dissertation will focus on the development of a neural controller based on H8 pseudolinear control, to be applied to the satellite attitude control problem, as well as the satellite orbit control problem. The resulting controller is proven to be robust when dealing with important disturbances that are relevant in space missions, due to being trained using H8 controller data. Moreover, since the original controller is pseudolinear, the neural controller can capture the nonlinearities that exist in the equations of motion as well as in the attitude dynamics equations.Nas últimas décadas, o controlo não-linear tem sido cada vez mais utilizado, maioritariamente devido ao desenvolvimento de melhores ferramentas de análise, utilizadas para a simulação problemas reais, que tendem a ser não-lineares. Os controladores não-lineares têm a vantagem de serem mais precisos e eficientes quando utilizados em situações complexas, como controlo orbital, rendezvous de satélites, e controlo de atitude, comparados com controladores lineares. No entanto, as técnicas comuns de controlo não-linear requerem o uso de modelos com alto grau de fidelidade, o que muitas vezes não é o caso, limitando assim a sua utilização. Além disso, os rápidos avanços no campo de machine learning levantaram a possibilidade de utilizar ferramentas como redes neuronais para aprender a dinâmica de sistemas não lineares, numa tentativa de poder computar as entradas de controlo sem a necessidade de resolver as equações matemáticas altamente complexas que alguns controladores não lineares necessitam que sejam resolvidas, em tempo real, contornando assim a necessidade de maior potência computacional, que pode reduzir custos e peso, em missões espaciais. Esta dissertação focar-se-á no desenvolvimento de um controlador neuronal, baseado em controlo pseudolinear por H8, com o intuito de ser aplicado no problema de controlo orbital, bem como no problema de controlo de atitude. O controlador resultante provou ser robusto ao lidar com perturbações importantes, relevantes em missões espaciais, devido ao facto de ter sido treinado usando dados do controlador H8. Além disso, como o controlador original é pseudolinear, o controlador neuronal pode captar as dinâmicas não lineares que existem nas equações de movimento, bem como nas equações da dinâmica de atitude.engControlo de AtitudeControlo de ÓrbitaControlo Robusto Não-LinearRedes NeuronaisNonlinear Robust Neural Control with Applications to Aerospace Vehiclesmaster thesis203288092