Loading...
Research Project
Strategic Project - LA 8 - 2011-2012
Funder
Authors
Publications
Performance assessment of security mechanisms for cooperative mobile health applications
Publication . Canelo, Fábio Alexandre Afonso; Rodrigues, Joel José Puga Coelho
Mobile health (m-Health) applications aim to deliver healthcare services through mobile applications regardless of time and place. An mHealth application makes use of wireless communications to sustain its health services and often providing a patient-doctor interaction. Therefore, m-Health applications present several challenging issues and constraints, such as, mobile devices battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, network delays, and of most importance, privacy and security concerns. In a typical m-Health system, information transmitted through wireless channels may contain sensitive information such as patient’s clinic history, patient’s personal diseases information (e.g. infectious disease as HIV - human immunodeficiency virus). Carrying such type of information presents many issues related to its privacy and protection. In this work, a cryptographic solution for m-Health applications under a cooperative environment is proposed in order to approach two common drawbacks in mobile health systems: the data privacy and protection. Two different approaches were proposed: i) DE4MHA that aims to guarantee the best confidentiality, integrity, and authenticity of mhealth systems users data and ii) eC4MHA that also focuses on assuring and guarantying the m-Health application data confidentiality, integrity, and authenticity, although with a different paradigm. While DE4MHA considers a peer-to-peer node message forward, with encryption/decryption tasks on each node, eC4MHA focuses on simply encrypting data at the requester node and decrypting it when it reaches the Web service. It relays information through cooperative mobile nodes, giving them the only strictly required information, in order to be able to forward a request, until it reaches the Web service responsible to manage the request, and possibly answer to that same request. In this sense, the referred solutions aim any mobile health application with cooperation mechanism embedded. For test purposes a specific mobile health application, namely SapoFit, was used. Cryptographic mechanisms were created and integrated in SapoFit application with built in cooperation mechanisms. A performance evaluation of both approaches in a real scenario with different mobile devices is performed and presented in this work. A comparison with the performance evaluations of both solutions is also presented.
Performance assessment of mobility solutions for IPv6-based healthcare wireless sensor networks
Publication . Caldeira, João Manuel Leitão Pires; Rodrigues, Joel José Puga Coelho; Lorenz, Pascal
This thesis focuses on the study of mobile wireless sensor networks applied to healthcare
scenarios. The promotion of better quality-of-life for hospitalized patients is addressed in this
research work with a solution that can help these patients to keep their mobility (if possible).
The solution proposed allows remote monitoring and control of patients’ health in real-time
and without interruptions. Small sensor nodes able to collect and send wirelessly the health
parameters allow for the control of the patients' health condition. A network infrastructure,
composed by several access points, allows the connection of the sensor nodes (carried by the
patients) to remote healthcare providers. To ensure continuous access to sensor nodes special
attention should be dedicated to manage the transition of these sensor nodes between
different access points’ coverage areas. The process of changing an access point attachment
of a sensor node is called handover. In that context, this thesis proposes a new handover
mechanism that can ensure continuous connection to mobile sensor nodes in a healthcare
wireless sensor network. Due to the limitations of sensor nodes’ resources, namely available
energy (these sensor nodes are typically powered by small batteries), the proposed
mechanism pays a special attention in the optimization of energy consumption. To achieve
this optimization, part of this work is dedicated to the construction of a small sensor node.
The handover mechanism proposed in this work is called Hand4MAC (handover mechanism for
MAC layer). This mechanism is compared with other mechanisms commonly used in handover
management. The Hand4MAC mechanism is deployed and validated through by simulation and
in a real testbed. The scenarios used for the validation reproduces a hospital ward. The
performance evaluation is focused in the percentage of time that senor nodes are accessible
to the network while traveling across several access points’ coverage areas and the energy
expenditures in handover processes. The experiments performed take into account various
parameters that are the following: number of sent messages, number of received messages,
multicast message usage, energy consumption, number of sensor nodes present in the
scenario, velocity of sensor nodes, and time-to-live value. In both simulation and real
testbed, the Hand4MAC mechanism is shown to perform better than all the other handover
mechanisms tested. In this comparison it was only considered the most promising handover
mechanisms proposed in the literature.
Block acknowledgment mechanisms for the optimization of channel use in wireless sensor networks
Publication . Barroca, Norberto; Velez, Fernando J.; Chatzimisios, Periklis
One of the fundamental reasons for the IEEE 802.15.4 standard Medium Access Control (MAC) inefficiency is overhead. The current paper proposes and analyses the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol, a new innovative protocol that allows the aggregation of several acknowledgment responses in one special BACK Response packet. Two different solutions are addressed. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under ideal conditions (a channel environment with no transmission errors). The proposed schemes are compared against the basic access mode of IEEE 802.15.4 through extensive simulations by employing the OM-NET++ simulator. We demonstrate that the network performance is significantly improved in terms of throughput and end-to-end delay.
Impact of Switching Latency Times in Energy Consumption of IEEE 802.15.4 Radio Transceivers
Publication . Barroca, Norberto; Gouveia, Paulo T.; Velez, Fernando
The energy efficiency of wireless sensor networks medium access control protocols depends on the adopted radio transceiver. This paper addresses the influence of the switching latency times in the energy consumption of IEEE 802.15.4 radio transceivers. Three different radio transceivers have been considered operating in the 2.4 GHz band. Simulation results performed in OMNET++ show that the radio transceiver with the shortest latency switching time has better performance in terms of energy consumption.
Antennas and circuits for ambient RF energy harvesting in wireless body area networks
Publication . Barroca, Norberto; Saraiva, Henrique M.; Gouveia, Paulo T.; Tavares, Jorge; Borges, Luís M.; Velez, Fernando J.; Loss, Caroline; Salvado, Rita; Pinho, Pedro; Gonçalves, Ricardo; Carvalho, Nuno Borges; Chavez-Santiago, Raul; Balasingham, Ilangko
In this paper, we identify the spectrum opportunities for radio frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. The field trials have been performed in Covilhâ by using the NAKDA-SMR spectrum analyser with a measuring antenna. Based on the identification of the most promising opportunities, a dual-band band printed antenna operating at GSM bands (900/1800) is proposed, with gains of the order 1.8-2.06 dBi and efficiency 77.6-84%. Guidelines for the design of RF energy harvesting circuits and choice of textile materials for a wearable antenna are also discussed. Besides, we address the guidelines for designing circuits to harvest energy in a scenario where a wireless body area network (WBAN) is being sustained by a TX91501 Powercasf® RF dedicated transmitter and a five-stage Dickson voltage multiplier responsible for harvesting the RF energy. The IRIS motes, considered for our WBAN scenario, can perpetually operate if the RF received power attains at least -10 dBm.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
PEst-OE/EEI/LA0008/2011