Repository logo
 
Publication

Joining models with commutative orthogonal block structure

dc.contributor.authorSantos, Carla
dc.contributor.authorNunes, Célia
dc.contributor.authorDias, Cristina
dc.contributor.authorMexia, João T.
dc.date.accessioned2020-02-19T14:46:57Z
dc.date.available2020-02-19T14:46:57Z
dc.date.issued2017
dc.description.abstractMixed linear models are a versatile and powerful tool for analysing data collected in experiments in several areas. Amixed model is a model with orthogonal block structure, OBS, when its variance–covariance matrix is ofall the positive semi-definite linear combinations of known pairwise orthogo-nal orthogonal projection matrices that add up to the identity matrix. Models with commutative orthogonal block structure, COBS, are a special case of OBS in which the orthogonal projection matrix on the space spanned by the mean vector commutes with the variance–covariance matrix. Using the algebraic structure of COBS, based on Commuta-tive Jordan algebras of symmetric matrices, and the Carte-sian product we build up complex models from simpler ones through joining, in order to analyse together models obtained independently. This commutativity condition of COBS is a necessary and sufficient condition for the least square esti-mators, LSE, to be best linear unbiased estimators, BLUE, whatever the variance components. Since joining COBS we obtain new COBS, the good properties of estimators hold for the joined models.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.laa.2016.12.019pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/9372
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectJordan algebrapt_PT
dc.subjectMixed modelspt_PT
dc.subjectModels with commutative orthogonal block structurept_PT
dc.subjectModels joiningpt_PT
dc.titleJoining models with commutative orthogonal block structurept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00297%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00212%2F2013/PT
oaire.citation.endPage245pt_PT
oaire.citation.startPage235pt_PT
oaire.citation.titleLinear Algebra and its Applicationspt_PT
oaire.citation.volume517pt_PT
oaire.fundingStream5876
oaire.fundingStream5876
person.familyNameNunes
person.familyNameMexia
person.givenNameCélia
person.givenNameJoão
person.identifierR-000-3NA
person.identifierR-000-7FX
person.identifier.ciencia-idAC1F-3CA0-75FE
person.identifier.ciencia-id0A1B-09AC-0E39
person.identifier.orcid0000-0003-0167-4851
person.identifier.orcid0000-0001-8620-0721
person.identifier.ridH-1231-2016
person.identifier.scopus-author-id57194580125
person.identifier.scopus-author-id6603673040
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofctRestrições editoriais.pt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6c089279-689d-4566-b2ee-797ddbefbeab
relation.isAuthorOfPublication3579587b-b3c6-4af2-94fb-a9304279ac94
relation.isAuthorOfPublication.latestForDiscovery6c089279-689d-4566-b2ee-797ddbefbeab
relation.isProjectOfPublication18e0da40-2991-4f4d-8a7d-58d43cdf7302
relation.isProjectOfPublicationea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9
relation.isProjectOfPublication.latestForDiscoveryea5a2d9f-aba3-4768-a5f0-2ceb69fcf2b9

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
9_Joining models with COBS.pdf
Size:
263.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: