Faculdade Engenharia
Permanent URI for this community
Browse
Browsing Faculdade Engenharia by advisor "Abreu, António João Pina da Costa Feliciano"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Applying Social Network Analysis to Monitor Risk in Project ManagementPublication . Nunes, Marco Paulo Afonso; Coelho, Denis Alves; Abreu, António João Pina da Costa Feliciano; Madeira, Maria José AguilarIn today’s business environment it is often argued that if organizations want to achieve sustainable competitive advantages or even just survive, they must excel in performance and innovation to meet complex and unpredictable market demands. Often organizations alone do not always have the necessary resources such as brilliant minds, technologies, know-how, financial support, just to name a few, to properly respond to such market demands. To overcome such constraints organizations usually engage in collaborative working models (such as open innovation (Chesbrough, 2003)), which essentially consist in strategic partnerships with other entities such as other business partners, public institutions, universities, and development centers, just to name a few, whereby the collaborative exchange of resources and capabilities enables achieving their objectives in a faster and more efficient way. However, it is often argued that the lack of effective models to support collaborative initiatives is the biggest obstacle for organizations to engage in a higher frequency in collaborative working models. In project management, one of the biggest challenges that organizations face today as they deliver projects is to distinguish project critical success factors from project critical failure factors regarding how project stakeholders collaborate across the different phases of a project lifecycle. This challenge has been a growing concern particularly in organizations that deliver projects, essentially due to the potential high impact (both, negative and positive) in economic, environmental, and social dimensions. More concretely, this challenge is essentially related to how the dynamic interactions between the different project stakeholders - characterized by the mix of formal and informal networks of relationships that emerge and evolve across the different phases of a project lifecycle, and how these may or not impact project outcomes (success or failure). In this work a heuristic two-part model to address the mentioned challenge is proposed. The development of the proposed model is supported by three distinct but interrelated scientific fields. They are: (1) project management - which contributes with the definitions and structure of a project lifecycle, (2) risk management - which contributes with the standard risk management process framework, and (3) social network analysis - which provides the tools & techniques to identify and quantify the collaborative interactions between entities throughout a project lifecycle. The proposed model was developed to identify and quantitatively measure the extent to which such project participant´s dynamic interactions (also called as dynamic behaviors), influence project outcomes (usually classified as successfully or unsuccessfully delivered). The proposed model in this work named POL Model (which stands for the Project Outcome Likelihood model), has two parts. In part one the proposed model will analyze five key project collaboration types ((1) Communication and Insight, (2) Internal and Cross Boundaries-Collaboration, (3) Know-how sharing and Power, (4) Clustering (variability effect—PSNVar), and (5) Teamwork efficiency) that emerge and evolve in each project phase of a given project lifecycle, by accessing, analyzing and interpreting project data-related collected in three different sources ((1) project meetings, (2) project emails, and (3) through the application of a SNA-based survey) from successfully and unsuccessfully delivered projects. The model will search in both successfully and unsuccessfully delivered projects for unique repeatable behavioral patterns (RBPs) regarding each one of the five key project collaboration types. If the model identifies different RBPs in projects that were successfully delivered from those that were unsuccessfully delivered, such RBPs are classified as critical success factors (CSFs). If not, then no CSFs are identified. If the latter outcome is the case, then, according to the proposed model in this work, collaborative projects outcomes (successful or unsuccessful) are not influenced by the dynamic interactions of project participants that emerge and evolve across the different phases of a given project lifecycle. Once part 1 of the POL model is concluded, and if CSFs have been found, then part two can initiate. In part two the POL model will provide guidance to an ongoing or upcoming project by analyzing the deviation between an actual project evolution (actual state), and the CSFs identified in part 1 regarding each one of the already mentioned five key project collaboration types.