Browsing by Author "Silva, Bruno Miguel Correia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Content storage and retrieval mechanisms for vehicular delay-tolerant networksPublication . Silva, Bruno Miguel Correia; Rodrigues, Joel José Puga CoelhoVehicular delay-tolerant networks (VDTNs) were proposed as a novel disruptive network concept based on the delay tolerant networking (DTN) paradigm. VDTN architecture uses vehicles to relay messages, enabling network connectivity in challenging scenarios. Due to intermittent connectivity, network nodes carry messages in their buffers, relaying them only when a proper contact opportunity occurs. Thus, the storage capacity and message retrieving of intermediate nodes directly affects the network performance. Therefore, efficient and robust caching and forwarding mechanisms are needed. This dissertation proposes a content storage and retrieval (CSR) solution for VDTN networks. This solution consists on storage and retrieval control labels, attached to every data bundle of aggregated network traffic. These labels define cacheable contents, and apply cachecontrol and forwarding restrictions on data bundles. The presented mechanisms gathered several contributions from cache based technologies such as Web cache schemes, ad-hoc and DTN networks. This solution is fully automated, providing a fast, safe, and reliable data transfer and storage management, while improves the applicability and performance of VDTN networks significantly. This work presents the performance evaluation and validation of CSR mechanisms through a VDTN testbed. Furthermore it presents several network performance evaluations and results using the well-known DTN routing protocols, Epidemic and Spray and Wait (including its binary variant). The comparison of the network behavior and performance on both protocols, with and without CSR mechanisms, proves that CSR mechanisms improve significantly the overall network performance.
- Performance evaluation of cooperation strategies for m-health services and applicationsPublication . Silva, Bruno Miguel Correia; Rodrigues, Joel José Puga CoelhoHealth telematics are becoming a major improvement for patients’ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications.