CICS - Centro de Investigação em Ciências da Saúde
Permanent URI for this community
The Health Sciences Research Centre (“Centro de Investigação em Ciências da Saúde”; CICS-UBI) is a Research Unit financed by the Foundation for Science and Technology (FCT). The mission of CICS-UBI is to promote the production of scientific knowledge and background in Health Sciences. The Unit has two research groups of “Hormones and inflammation in health and disease” (HIHD group) and “Biotechnology and Biomolecular Sciences” (BBS group).
Website CICSBrowse
Browsing CICS - Centro de Investigação em Ciências da Saúde by Field of Science and Technology (FOS) "Ciências Médicas::Ciências da Saúde"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ARIA-Italy managing allergic rhinitis and asthma in a changing world: The role of the PharmacistPublication . Paoletti, Giovanni; Giua, Corrado; Marti, Alessandro; Baio, Matteo Alberto; Valli, Nicolò; Ridolo, Erminia; Ventura, Maria Teresa; Passalacqua, Giovanni; Puggioni, Francesca; Lourenço, Olga ; Bousquet, Jean; Canonica, Giogio Walter; Heffler, Enrico; Lombardi, CarloAllergic rhinitis (AR) and asthma are common respiratory disorders that often occur together, affecting quality of life and increasing healthcare expenses of patients. These chronic illnesses are often managed without medical supervision, creating distinct challenges. A lack of resources can limit regular follow-up, which in turn promotes disease mismanagement and an increased reliance on self-medication, including the inappropriate use of corticosteroids and nasal decongestants. Community pharmacies could serve as critical primary healthcare providers, facilitating AR and asthma management by promoting therapy adherence, minimizing drug misuse, and improving symptom monitoring using digital tools. The evolving role of pharmacists as vital healthcare team members is highlighted by their involvement in screening, prevention, and patient education, particularly in underserved communities. Strengthening the partnerships between pharmacists, physicians, and patients may lead to more tailored and effective management strategies. This collaborative approach has demonstrated promise in enhancing disease outcomes and reducing healthcare costs.
- Injectable and implantable hydrogels for localized delivery of drugs and nanomaterials for cancer chemotherapy: A reviewPublication . Pouso, Manuel António do Rosário ; Melo, Bruna Daniela Lopes ; Gonçalves, Joaquim; Louro, Ricardo; Mendonça, António; Correia, Ilídio Joaquim Sobreira ; de Melo-Diogo, DuarteMultiple chemotherapeutic strategies have been developed to tackle the complexity of cancer. Still, the outcome of chemotherapeutic regimens remains impaired by the drugs’ weak solubility, unspecific biodistribution and poor tumor accumulation after systemic administration. Such constraints triggered the development of nanomaterials to encapsulate and deliver anticancer drugs. In fact, the loading of drugs into nanoparticles can overcome most of the solubility concerns. However, the ability of systemically administered drug-loaded nanomaterials to reach the tumor site has been vastly overestimated, limiting their clinical translation. The drugs’ and drug-loaded nanomaterials’ systemic administration issues have propelled the development of hydrogels capable of performing their direct/local delivery into the tumor site. The use of these macroscale systems to mediate a tumor-confined delivery of the drugs/drugs-loaded nanomaterials grants an improved therapeutic efficacy and, simultaneously, a reduction of the side effects. The manufacture of these hydrogels requires the careful selection and tailoring of specific polymers/materials as well as the choice of appropriate physical and/or chemical crosslinking interactions. Depending on their administration route and assembling process, these matrices can be classified as injectable in situ forming hydrogels, injectable shear-thinning/selfhealing hydrogels, and implantable hydrogels, each type bringing a plethora of advantages for the intended biomedical application. This review provides the reader with an insight into the application of injectable and implantable hydrogels for performing the tumor-confined delivery of drugs and drug-loaded nanomaterials.
- Renewable Photo-Cross-Linkable Polyester-Based Biomaterials: Synthesis, Characterization, and Cytocompatibility AssessmentPublication . Cernadas, Maria Teresa; Pereira, João; Melo, Bruna Daniela Lopes ; de Melo-Diogo, Duarte; Correia, Ilídio Joaquim Sobreira ; Alves, Patrícia; Calvinho, Paula Cristina Nunes FerreiraTThe present work consist of the synthesis of photo-crosslinkable materials, based on unsaturated polyesters (UPs), synthesized from biobased monomers from renewable sources such as itaconic acid and 1,4- butanediol. The UPs were characterized to assess the influence of polycondensation reaction temperature and cross-linking time on their final properties. For this purpose, different UV irradiation exposure periods were tested. Homogeneous, uniform, and transparent films were obtained after 1, 3, and 5 min of UV exposure. These cross-linked films were then characterized. All materials presented high gel content, which was dependent on the reaction’s temperature. The thermal behaviors of the UPs were shown to be similar. In vitro hydrolytic degradation tests showed that the materials can undergo degradation in phosphate-buffered saline (PBS) at pH 7.4 and 37 °C, ensuring their biodegradability over time. Finally, to assess the applicability of the polyesters as biomaterials, their cytocompatibility was determined by using human dermal fibroblasts.