Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Fractal Patch Antenna based on Crystal Photonic applied to Intelligent Transportation Systems in the 40 GHz Millimeter WavebandPublication . Bagheri, Nila; Khan, Bahram; Teixeira, Emanuel; Velez, Fernando J.5G (and beyond) has very high bandwidth, short latency, better quality of service, and the right amount of capacity. Technological breakthroughs in mobile communication systems user equipments operating in the millimeter wavebands imply a high gain to compensate the effect of path loss. In this work, a novel photonic crystal-based microstrip patch antenna array with high gain is designed to be used in the next generation intelligent transportation ssytems, e.g., V2X, and other exciting applications. The Photonic Band Gap (PBG) structure and Finite Element Method were considered. By using the High Frequency Structure Simulation (HFSS) software, a fractal microstrip patch antenna operating in the U-band of the electromagnetic spectrum is conceived and modeled on a two-dimensional photonic crystal. The use of the PBG structure improves the antenna’s gain and bandwidth, while the antenna’s fractal form decreases its size and improves its input impedance. The operational frequency range is 41.72-45.12 GHz with a resonant band centered at 43.26 GHz. The proposed antenna is comprised of a 0.45 mm thick copper ground plane, a 0.9 mm thick FR-4 epoxy substrate with a relative transmittance of 4.4, and a 0.45 mm thick copper antenna patch. The achieved frequency band gain is 8.95 dBi.
- Multi-Band Resonant Photonic Crystal Antenna for 5G ApplicationsPublication . Teixeira, Emanuel; Teixeira, Emanuel; Peha, Jon; Velez, Fernando J.Extended reality (XR) is bridging the gap between virtual and real-world interactions enabling users to interact in realistic virtual worlds, removing physical obstacles, and establishing shared areas that promote greater comprehension and teamwork. The growing demand for high-frequency 5G communication systems supporting these new applications motivates the need of compact and efficient antennas capable of operating at millimeter-wave frequency bands. This work explores how the use of photonic crystals leverages the properties of a multi-band antenna operating within the 27.81 GHz and 41.93 GHz resonant bands. The High-Frequency Structure Simulation (HFSS) software is utilized in this paper to outline a comprehensive design and modeling approach for the proposed microstrip patch antenna.The design process involves optimizing the geometry and periodicity of the photonic crystal structure to obtain resonant modes at the desired frequency bands by exploiting its bandgap properties, whilst enabling high quality resonances within the targeted frequency bands. The electromagnetic simulations and numerical analysis results demonstrate that the designed multiband photonic crystals-based antenna achieves a gain of 9.61 dBi. The resonant modes exhibit high quality factors, resulting in improved radiation efficiency. The proposed photonic crystalbased antenna compact size, high gain, and multiple resonant bands make it suitable for a wide range of applications, including next-generation wireless communication systems supporting XR, radar systems, or satellite communications in the upper frequency bands.