Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regenerationPublication . Serra, Inês Raquel Tavares; Fradique, Ricardo Gil; Vallejo, Mariana C. da S.; Correia, Tiago R.; Miguel, Sónia P.; Correia, Ilídio Joaquim SobreiraRecently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure.
- Production of new 3D scaffolds for bone tissue regeneration by rapid prototypingPublication . Fradique, Ricardo Gil; Correia, Tiago R.; Miguel, Sónia P.; Sá, Kevin; Figueira, Daniela Sofia Rodrigues; Mendonça, António; Correia, Ilídio Joaquim SobreiraThe incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.
- 3D Printed scaffolds with bactericidal activity aimed for bone tissue regenerationPublication . Correia, Tiago R.; Figueira, Daniela Sofia Rodrigues; Sá, Kevin; Miguel, Sónia P.; Fradique, Ricardo Gil; Mendonça, António; Correia, I.J.Nowadays, the incidence of bone disorders has steeply ascended and it is expected to double in the next decade, especially due to the ageing of the worldwide population. Bone defects and fractures lead to reduced patient’s quality of life. Autografts, allografts and xenografts have been used to overcome different types of bone injuries, although limited availability, immune rejection or implant failure demand the development of new bone replacements. Moreover, the bacterial colonization of bone substitutes is the main cause of implant rejection. To vanquish these drawbacks, researchers from tissue engineering area are currently using computer-aided design models or medical data to produce 3D scaffolds by Rapid Prototyping (RP). Herein, Tricalcium phosphate (TCP)/Sodium Alginate (SA) scaffolds were produced using RP and subsequently functionalized with silver nanoparticles (AgNPs) through two different incorporation methods. The obtained results revealed that the composite scaffolds produced by direct incorporation of AgNPs are the most suitable for being used in bone tissue regeneration since they present appropriate mechanical properties, biocompatibility and bactericidal activity.