Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Geotechnical Characterization of Water Treatment Sludge for Liner Material Production and Soft Soil ReinforcementPublication . Marchiori, Leonardo; Studart, André; Albuquerque, Antonio; Cavaleiro, Victor; Silva, AbilioA water treatment sludge (WTS) was characterized in order to evaluate if its properties would be suitable for use as liner of earthworks or for strengthening a clay soil. A WTS and a clayey soil was characterized in terms of granulometry, cumulative volumes, specific surface, density, plastic limit, liquid limit, water content, hydraulic conductivity, and characteristics of compaction (optimal water content and dry density). This study aimed to exhibit and evaluate these investigated parameters of WTS, soft soil and mixed proportions between the materials for liners’ material production while evaluating soft soils’ reinforcement feasibility. The results have shown WTS’s contribution with its fine granulometry and compaction characteristics, indicating filling properties and possible feasibility as soft soils additions for liners’ material production while being applicable for soils‘ reinforcements, corroborating with existing literature on the subject. Thus, the currently developed investigation has exposed WTS as a potential addition for these applications while also attending society’s new demands towards a more sustainable future.
- Geotechnical Characterization of Vegetal Biomass Ashes Based Materials for Liner ProductionPublication . Marchiori, Leonardo; Studart, André; Morais, Maria Vitoria; Albuquerque, Antonio; Cavaleiro, VictorThis paper aims to evaluate geotechnically, chemically, mechanically, and hydraulically parameters of vegetal-based biomass ashes (VBA) and its soil incorporation with different ratios as potential liner material and soils strengthening. Composites were developed for testing with different ratios of VBA: soil, following 05:95, 10:90, 15:85, and 20:80%. All laboratorial testing program followed European standards. For geotechnical characterization, the following tests were performed for all mixtures, the soil and VBA: granulometric distribution, specific gravity and Atterberg limits. Chemical characterization was done by collecting pH values and energy-dispersive X-ray spectroscopy (EDS) parameters for elemental and oxides analysis. Also, x-ray diffraction (XRD) was done to evaluate all sample’s mineralogical description. In addition, mechanical analysis was conducted by analyzing expansibility, one-dimension consolidation through oedometer, and consolidated undrained (CU) triaxial test, along with falling head permeability for additional permeability analysis. Results have shown a finer granulometry and decrease of plasticity, 5% to non-plastic behavior, as higher amounts of VBA are introduced, exposing a filling-material behavior. EDS and XRD analysis indicate quartz, muscovite, orthoclase and calcite composition, and VBA could possibly have pozzolanic properties due to high silica-alum-ferric oxides amount. Mechanical parameters have shown a stabilization of VBA within the analyzed soil, exposing a slight reduction on settlements while increasing friction angle, 25–30º, and decreasing cohesion, 5–0 kPa. Permeability values have shown their feasibility for liners application, as found values characterizes all mixtures as low-permeability materials, especially introducing 5% of the residue into soil which values were below 10–9 m/s. Thus, the incorporation of VBA into soils paves a solid alternative for reusing this material in varied applications, as the analyzed soft soil has been geotechnically enhanced. Additional analysis, mainly pozzolanicity levels and leachability tests, can contribute for this on-going study to stablish VBA as a feasible material for the industry.
- Geotechnical Characterization of Biomass Ashes for Soil Reinforcement and Liner MaterialPublication . Marchiori, Leonardo; Studart, André; Morais, Maria Vitoria; Albuquerque, Antonio; Andrade Pais, Luís; Boscov, Maria Eugenia Gimenez; Cavaleiro, VictorBiomass ashes (BA) have been intensively studied as amendments for soil in earthworks. This paper aimed to geotechnically characterize BA from pines and olive trees compared to the soil from Castelo Branco, Portugal. Namely, granulometry, specific gravity, Atterberg limits and optimal compaction values were obtained and analyzed in order to valorize the residue incorporated into soils. This work is part of broader efforts to develop an alternative material that can be used in hydraulic barriers as liners and for soil reinforcement. Thus, BA can contribute to reductions in weight and plasticity, and filling properties. Further studies are needed, particularly mechanical and hydraulic performance tests.