Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Hyaluronic acid - Based wound dressings: A reviewPublication . Graça, Mariana F. P.; Miguel, Sónia P.; Cabral, Cátia S. D.; Correia, I.J.Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a major component of skin extracellular matrix (ECM) and it is involved in the inflammatory response, angiogenesis, and tissue regeneration process. Due to the intrinsic properties of HA (such as biocompatibility, biodegradability and hydrophilic character), it has been used to produce different wound dressings, namely sponges, films, hydrogels, and electrospun membranes. Herein, an overview of the different HA-based wound dressings that have been produced so far is provided as well as the future directions regarding the strategies aimed to improve the mechanical stability of HA-based wound dressings, along with the incorporation of biomolecules intended to ameliorate their biological performance during the healing process.
- Chitosan based-asymmetric membranes for wound healing: a reviewPublication . Miguel, Sónia; Moreira, André; Correia, I.J.The wound healing process involves highly complex and dynamic events that allow the re-establishment of skin's structural integrity. To further improve or to overcome the drawbacks associated with this process, researchers have been focused on the development of new therapeutics. Among them, asymmetric membranes are currently one of the most promising approaches to be used in wound healing due to its structural similarities with the epidermal and dermal layers of the native skin. The outer layer of asymmetric membranes provides a barrier that protects the wound from external damages (e.g. microorganisms and chemical agents), whereas the interior porous layer acts as template for supporting cell adhesion, migration and proliferation. Among the different materials used to produce these distinct layers, the chitosan arises as one of the preeminent materials due to its inherent biocompatibility, antibacterial, hemostatic, and healing properties. Therefore, in this review, it is provided an overview of the different chitosan-based asymmetric membranes developed for wound dressing applications. Further, the chitosan modifications to enhance its bioactivity as well as the asymmetric membranes general properties and production techniques are also described.
- Bioinspired multilayer membranes as potential adhesive patches for skin wound healingPublication . Sousa, Maria Peixoto; Neto, Ana; Correia, Tiago R.; Miguel, Sónia P.; Matsusaki, Michiya; Correia, I.J.; Mano, João F.Bioinspired and adhesive multilayer membranes are produced using the layer-by-layer (LbL) assembly of chitosan (CHT), alginate (ALG) and hyaluronic acid modified with dopamine (HA-DN). Freestanding multilayer membranes without DN are also produced as a control. The success of the synthesis of HA-DN was confirmed using UV-visible spectroscopy. Scanning electron microscopy images indicate that the surface of the DN-containing membranes is more porous than the control ones; they also present a higher average thickness value for the same number of CHT/ALG/CHT/HA(-DN) tetralayers (n = 100). Also, water uptake, mechanical strength and adhesion are enhanced with the introduction of DN moieties along the nano-layers. Besides, human dermal fibroblast viability, enhanced adhesion and proliferation were confirmed by immunofluorescence assays and by measuring both the metabolic activity and DNA content. Moreover, in vivo assays with such kinds of DN-containing multilayer membranes were performed; the application of these membranes in the treatment of dermal wounds induced in Wistar rats results in the highest decrease of inflammation of rat skin, compared with the control conditions. Overall, this investigation suggests that these mussel-inspired freestanding multilayer membranes may enhance either their mechanical performance or cellular adhesion and proliferation, leading to an improved wound healing process, being a promising material to restore the structural and functional properties of wounded skin.