Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Could tDCS Be a Potential Performance-Enhancing Tool for Acute Neurocognitive Modulation in eSports? A Perspective ReviewPublication . Machado, Sergio; Travassos, Bruno; Teixeira, Diogo; Rodrigues, Filipe; Cid, Luis; Monteiro, DiogoCompetitive sports involve physical and cognitive skills. In traditional sports, there is a greater dependence on the development and performance of both motor and cognitive skills, unlike electronic sports (eSports), which depend much more on neurocognitive skills for success. However, little is known about neurocognitive functions and effective strategies designed to develop and optimize neurocognitive performance in eSports athletes. One such strategy is transcranial direct current stimulation (tDCS), characterized as a weak electric current applied on the scalp to induce prolonged changes in cortical excitability. Therefore, our objective is to propose anodal (a)-tDCS as a performance-enhancing tool for neurocognitive functions in eSports. In this manuscript, we discussed the neurocognitive processes that underlie exceptionally skilled performances in eSports and how tDCS could be used for acute modulation of these processes in eSports. Based on the results from tDCS studies in healthy people, professional athletes, and video game players, it seems that tDCS is applied over the left dorsolateral prefrontal cortex (DLPFC) as a potential performance-enhancing tool for neurocognition in eSports.
- Impact of victory and defeat on the perceived stress and autonomic regulation of professional eSports athletesPublication . Machado, Sergio; Sant'Ana, Leandro de Oliveira; Cid, Luis; Teixeira, Diogo; Rodrigues, Filipe; Travassos, Bruno; Monteiro, DiogoCompetitive sports involve physiological, technical and psychological skills, which influence directly on individuals’ performance. This study aims to investigate the levels of perceived stress and Heart Rate Variability (HRV) before and after matches with victory and defeat in professional eSports athletes. Our hypothesis was that the winners would have better autonomic and stress responses after match, thus corroborating the literature on neurocardiac connections. Fifty male eSport players were selected players from 10 different Brazilian teams. The experiment was carried out in 2 sessions. Firstly, after signing the informed consent form, 24 h before the game, anthropometric, physical activity levels and time of expertise data were recorded only for sample characterization and the players were familiarized with the perceived stress scale—10 (PSS-10) and the HRV measurements. Secondly, players performed the PSS-10 and HRV recording at rest by 10 min 60 and 30 min before the game (i.e., baseline time) and 10 min after the end of the game. Overall, concerning PSS-10 our findings show that VG had significant reduced scores in post-game time compared to baseline (BL) and pre-game times, while DG had significant increased scores in post-game time compared to BL and pre-game times. Regarding HRV, our results demonstrate that VG had significant increase in RR, SDNN, rMSSD, pNN50 and HF, and significant decrease in LF and LF/HF, while DG had a significant decrease in RR, SDNN, rMSSD and HF, and significant increase in LF and LF/HF. It was observed that VG had better HRV responses (greater parasympathetic activation) as well as lower levels of perceived stress, while DG had worst HRV responses (greater sympathetic activation) and higher levels of perceived stress.