Repository logo
 
Loading...
Profile Picture
Person

Alibabaei, Khadijeh

Search Results

Now showing 1 - 3 of 3
  • Evaluation of a deep learning approach for predicting the Fraction of Transpirable Soil Water in vineyards
    Publication . Alibabaei, Khadijeh; Gaspar, Pedro Dinis; Campos, Rebeca M; Rodrigues, Gonçalo C.; Lopes, Carlos M.
    As agriculture has an increasing impact on the environment, new techniques can help meet future food needs while maintaining or reducing the environmental footprint. Those techniques must incorporate a range of sensing, communication, and data analysis technologies to make informed management decisions, such as those related to the use of water, fertilizer, pesticides, seeds, fuel, labor, etc., to help increase crop production and reduce water and nutrient losses, as well as negative environmental impacts. In this study, a Bidirectional Long Short-Term Memory (BiLSTM) model was trained on real data from Internet of Things sensors in a vineyard located in the Douro wine-growing region, from 2018–2021, to evaluate the ability of this model to predict the Fraction of Transpirable Soil Water (FTSW). The model uses historical data, including reference evapotranspiration, relative humidity, vapor pressure deficit, and rainfall, and outputs the FTSW for periods of one, three, five, and seven days. The model achieved an RMSE between 8.3% and 16.6% and an 𝑅2-score between 0.75 and 0.93. The model was validated on an independent dataset collected in 2002–2004 from a different vineyard located in the Lisbon wine-growing region, Portugal, and achieved an 𝑅2-score of 87% and an RMSE of 10.36%. Finally, the performance of the FTSW in the vineyard prediction model was compared with that of the Random Forest model, support vector regression, and linear regression. The results showed that BiLSTM performed better than the RF model on the unseen data, and the BiLSTM model can be considered a suitable model for the accurate prediction of the FTSW.
  • Crop Yield Estimation Using Deep Learning Based on Climate Big Data and Irrigation Scheduling
    Publication . Alibabaei, Khadijeh; Gaspar, Pedro Dinis; Lima, Tânia M.
    Deep learning has already been successfully used in the development of decision support systems in various domains. Therefore, there is an incentive to apply it in other important domains such as agriculture. Fertilizers, electricity, chemicals, human labor, and water are the components of total energy consumption in agriculture. Yield estimates are critical for food security, crop management, irrigation scheduling, and estimating labor requirements for harvesting and storage. Therefore, estimating product yield can reduce energy consumption. Two deep learning models, Long Short-Term Memory and Gated Recurrent Units, have been developed for the analysis of time-series data such as agricultural datasets. In this paper, the capabilities of these models and their extensions, called Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Units, to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate end-of-season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The Bidirectional Long Short-Term memory outperformed the Gated Recurrent Units network, the Long Short-Term Memory, and the Bidirectional Gated Recurrent Units network on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039. The performance of the Bidirectional Long Short-Term Memory in the test was compared with the most commonly used deep learning method, the Convolutional Neural Network, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest Regression. The Bidirectional Long Short-Term Memory outperformed the other models with an R2 score between 0.97 and 0.99. The results show that analyzing agricultural data with the Long Short-Term Memory model improves the performance of the model in terms of accuracy. The Convolutional Neural Network model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season.
  • Modeling Soil Water Content and Reference Evapotranspiration from Climate Data Using Deep Learning Method
    Publication . Alibabaei, Khadijeh; Gaspar, Pedro Dinis; Lima, Tânia M.
    In recent years, deep learning algorithms have been successfully applied in the development of decision support systems in various aspects of agriculture, such as yield estimation, crop diseases, weed detection, etc. Agriculture is the largest consumer of freshwater. Due to challenges such as lack of natural resources and climate change, an efficient decision support system for irrigation is crucial. Evapotranspiration and soil water content are the most critical factors in irrigation scheduling. In this paper, the ability of Long Short-Term Memory (LSTM) and Bidirectional LSTM (BLSTM) to model daily reference evapotranspiration and soil water content is investigated. The application of these techniques to predict these parameters was tested for three sites in Portugal. A single-layer BLSTM with 512 nodes was selected. Bayesian optimization was used to determine the hyperparameters, such as learning rate, decay, batch size, and dropout size.The model achieved the values of mean square error values within the range of 0.014 to 0.056 and R2 ranging from 0.96 to 0.98. A Convolutional Neural Network (CNN) model was added to the LSTM to investigate potential performance improvement. Performance dropped in all datasets due to the complexity of the model. The performance of the models was also compared with CNN, traditional machine learning algorithms Support Vector Regression, and Random Forest. LSTM achieved the best performance. Finally, the impact of the loss function on the performance of the proposed models was investigated. The model with the mean square error as loss function performed better than the model with other loss functions.