Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Property characterization and numerical modelling of the thermal conductivity of CaZrO3-MgO ceramic composites
    Publication . Carneiro, Pedro; Maceiras, Alberto; Nunes-Pereira, João; Silva, Pedro Dinho da; Silva, Abilio; Baudin, Carmen
    Three composite materials with different CaZrO3/MgO fractions (2/3, 1/2, 1/3) and two single-phase materials (CaZrO3 and MgO) were fabricated and their thermal conductivity was investigated. Complete thermal and mechanical characterizations (thermal expansion coefficient, thermal diffusivity, specific heat, hardness and toughness) of the materials were performed. Values of the thermal conductivity up to 480 ◦C of the composites were compared with those calculated with the main analytical models. From the real microstructures of the three composites, representative volume elements (RVE) were built and used for finite element modelling (FEM) of thermal conductivity using conductivities of the single-phase materials as inputs. The FEM results showed no differences for the 3 spatial directions of the RVE, nor for the different edge lengths (11, 14 and 17 μm). Results of all analytical models are statistically different from the experimental ones, being those from the Bruggeman model the closest. Results of the proposed FEM are statistically coincident with the experimental ones, showing sensitivity to temperature variation.
  • Young’s modulus and hardness of multiphase CaZrO3 -MgO ceramics by micro and nanoindentation
    Publication . Silva, Abílio P.; Booth, Fernando; Garrido, Liliana; Aglietti, Esteban; Pena, Pilar; Baudin, Carmen
    The aim of this work is to determine the values of the hardness and elastic modulus of the phases present in CaZrO3-MgO-ZrO2 composites and to analyse their contribution to the composite properties. Two materials previously developed with the same major phases (CaZrO3, MgO and c-ZrO2) present in different volume fractions and grain size have been analysed. The hardness and Young´s modulus of each phase determined by nanoindentation are independent from the specific composite and coincident with nanoindentation values for single phase bulk materials. The contribution of the individual phases to Young´s modulus of the multiphase materials is in agreement with calculations using the nanoindentation values and the Voight upper limit of the “rule of mixtures”. Scale dependence due to microcracking has been observed for microhardness values of the composites and differences between calculations and experimental values are related to this effect.