Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Sunlight-Driven AO7 Degradation with Perovskites (La,Ba)(Fe,Ti)O3 as Heterogeneous PhotocatalystsPublication . Rodrigues, Ana Sofia; Ciríaco, Lurdes; Pacheco, Maria José; Fernandes, Annabel; Mogo, Sandra; Lopes, AnaPerovskites of the (La,Ba)(Fe,Ti)O3 family were prepared, characterized, and utilized as heterogeneous photocatalysts, activated by natural sunlight, for environmental remediation of Acid Orange 7 (AO7) aqueous solutions. Catalysts were prepared by the ceramic (CM) and the complex polymerization (CP) methods and characterized by XRD, SEM, EDS, and band gap energy. It was found that catalytic properties depend on the synthesis method and annealing conditions. In the photocatalytic assays with sunlight, different AO7 initial concentrations and perovskite amounts were tested. During photocatalytic assays, AO7 and degradation products concentrations were followed by HPLC. Only photocatalysis with BaFeO3 -CM and BaTiO3 -CP presented AO7 removals higher than that observed for photolysis. However, photolysis leads to the formation of almost exclusively amino-naphthol and sulfanilic acid, whereas some of the perovskites utilized form lesstoxic compounds as degradation products, such as carboxylic acids (CA). Partial substitution of Ba by La in BaTiO3 -CM does not produce any change in the photocatalytic properties, but the replacement of Ti by Fe in the La0.1Ba0.9TiO3 leads to reduced AO7 removal rate, but with the formation of CAs. The best AO7 removal (92%) was obtained with BaFeO3 -CM (750 mg L−1 ), after 4 h of photocatalytic degradation with solar radiation
- Electrochemical Recovery of Phosphorus from Simulated and Real Wastewater: Effect of Investigational Conditions on the Process EfficiencyPublication . Sousa, Carlos Y.; Fernandes, Annabel; Amaro, Albertina; Pacheco, Maria José; Ciríaco, Lurdes; Lopes, AnaThe development of recovery processes has become essential in recent years as a strategy to minimize environmental pollution while boosting circular economy and sustainable development. Due to the exponential growth in agricultural production and the increased pollution of waterbodies, the production of fertilizers from recovered phosphorus has become an alternative to phosphate rock-based production. In this work, the effect of different operational parameters in the efficiency of the electrochemical recovery of phosphorus, from organic and inorganic sources, was investigated. Among the studied variables, the most significant was the electrode material utilized in the system. The use of magnesium sacrificial electrodes, as AZ31 alloys, led to phosphorus removal from solution of above 90%, allowing the recovery of both orthophosphates and organic phosphorus (glyphosate) as struvite, brucite, and other amorphous compounds. Since there is a lack in the literature about the use of magnesium electrodes in real wastewater electrochemical treatment, system efficiency was also evaluated using a sanitary landfill leachate, reaching 96% of phosphorus recovery. The specific energy consumption and faradaic efficiency of the phosphorus recovery process were also assessed.
- Reuse of Textile Dyeing Wastewater Treated by ElectrooxidationPublication . Pinto, Cláudia; Fernandes, Annabel; Lopes, Ana; Nunes, Maria João; Baía, Ana; Ciríaco, Lurdes; Pacheco, Maria JoséWastewater reuse has been addressed to promote the sustainable water utilization in textile industry. However, conventional technologies are unable to deliver treated wastewater with the quality required for reuse, mainly due to the presence of dyes and high salinity. In this work, the feasibility of electrooxidation, using a boron-doped diamond anode, to provide treated textile dyeing wastewater (TDW) with the quality required for reuse, and with complete recovery of salts, was evaluated. The influence of the applied current density on the quality of treated TDW and on the consecutive reuse in new dyeing baths was studied. The ecotoxicological evaluation of the process towards Daphnia magna was performed. After 10 h of electrooxidation at 60 and 100 mA cm−2, discolorized treated TDW, with chemical oxygen demand below 200 (moderate-quality) and 50 mg L−1 (high-quality), respectively, was obtained. Salt content was unchanged in both treatment conditions, enabling the consecutive reuse without any salt addition. For the two reuse cycles performed, both treated samples led to dyed fabrics in compliance with the most restrictive controls, showing that an effective consecutive reuse can be achieved with a moderate-quality water. Besides the water reuse and complete salts saving, electrooxidation accomplished an ecotoxicity reduction up to 18.6-fold, allowing TDW reuse without severe ecotoxicity accumulation.