Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Combinatorial delivery of Crizotinib–Palbociclib–Sildenafil using TPGS-PLA micelles for improved cancer treatmentPublication . Diogo, Duarte Miguel de Melo; Gaspar, Vítor Manuel Abreu; Costa, Elisabete C.; Moreira, André; Oppolzer, David; Gallardo, Eugenia; Correia, Ilídio Joaquim SobreiraThe co-delivery of multiple chemotherapeutics by micellar delivery systems is a valuable approach to improve cancer treatment since various disease hallmarks can be targeted simultaneously. However, the delivery of multiple drugs requires a nanocarrier structure that can encapsulate various bioactive molecules. In this study, we evaluate the simultaneous encapsulation of a novel triple drug combination in D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) (TPGS-PLA) amphiphilic micelles for cancer therapy. The drug mixture involves two anti-tumoral drugs, Crizotinib and Palbociclib combined with Sildenafil, a compound that is capable of increasing drug accumulation in the intracellular compartment. Such combination aims to achieve an enhanced cytotoxic effect in cancer cells. Our results demonstrated that TPGS-PLA copolymers self-assembled into stable nanosized micelles (158.3 nm) capable of co-encapsulating the three drugs with high loading efficiency. Triple drug loaded TPGS-PLA micelles were internalized in A549 non-small lung cancer cells and exhibited an improved cytotoxic effect in comparison with single (Crizotinib) or dual (Crizotinib–Palbociclib) drug loaded micelles, indicating the therapeutic potential of the triple co-delivery strategy. These findings demonstrate that TPGS-PLA micelles are suitable carriers for multiple drug delivery and also that this particular drug combination may have potential to improve cancer treatment.
- Evaluation of Mut(S) and Mut⁺ Pichia pastoris strains for membrane-bound catechol-O-methyltransferase biosynthesisPublication . Pedro, Augusto; Oppolzer, David; Bonifácio, M J; Maia, C J; Queiroz, João; Passarinha, L ACatechol-O-methyltransferase (COMT, EC 2.1.1.6) is an enzyme that catalyzes the methylation of catechol substrates, and while structural and functional studies of its membrane-bound isoform (MBCOMT) are still hampered by low recombinant production, Pichia pastoris has been described as an attractive host for the production of correctly folded and inserted membrane proteins. Hence, in this work, MBCOMT biosynthesis was developed using P. pastoris X33 and KM71H cells in shake flasks containing a semidefined medium with different methanol concentrations. Moreover, after P. pastoris glass beads lysis, biologically and immunologically active hMBCOMT was found mainly in the solubilized membrane fraction whose kinetic parameters were identical to its correspondent native enzyme. In addition, mixed feeds of methanol and glycerol or sorbitol were also employed, and its levels quantified using liquid chromatography coupled to refractive index detection. Overall, for the first time, two P. pastoris strains with opposite phenotypes were applied for MBCOMT biosynthesis under the control of the strongly methanol-inducible alcohol oxidase (AOX) promoter. Moreover, this eukaryotic system seems to be a promising approach to deliver MBCOMT in high quantities from fermentor cultures with a lower cost-benefit due to the cheaper cultivation media coupled with the higher titers tipically achieved in biorreactors, when compared with previously reported mammallian cell cultures.
- Co-delivery of Sildenafil (Viagra®) and Crizotinib for Synergistic and Improved Anti-tumoral TherapyPublication . Marques, João Filipe Gonçalves; Gaspar, Vítor Manuel Abreu; Oppolzer, David; Costa, Elisabete C.; Gallardo, Eugenia; Correia, Ilídio Joaquim SobreiraPurpose Cancer multi-drug resistance is a major issue associated with current anti-tumoral therapeutics. In this work, Crizotinib an anti-tumoral drug approved for the treatment of non-small lung cancer in humans, and Sildenafil (Viagra®), were loaded into micellar carriers to evaluate the establishment of a possible synergistic anti-tumoral effect in breast cancer cells. Methods Micellar carriers comprised by PEG-PLA block co-polymers were formulated by the solvent displacement method in which the simultaneous encapsulation of Crizotinib and Sildenafil was promoted. Encapsulation efficiency was analyzed by a new UPLC method validated for this combination of compounds. Micelle physicochemical characterization and cellular uptake were characterized by light scattering and confocal microscopy. The bio- and hemocompatibility of the carriers was also evaluated. MCF-7 breast cancer cells were used to investigate the synergistic anti-tumoral effect. Results Our results demonstrate that this particular combination induces massive apoptosis of breast cancer cells. The co-delivery of Crizotinib and Sildenafil was only possible due to the high encapsulation efficiency of the micellar systems (>70%). The micelles with size ranging between 93 and 127 nm were internalized by breast cancer cells and subsequently released their payload in the intracellular compartment. The results obtained demonstrated that the delivery of both drugs by micellar carriers led to a 2.7 fold increase in the anti-tumoral effect, when using only half of the concentration that is required when free drugs are administered. Conclusions Altogether, co-delivery promoted a synergistic effect and demonstrated for the first time the potential of PEG-PLA-Crizotinib-Sildenafil combination for application in cancer therapy.