Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • New insights for therapeutic recombinant human miRNAs heterologous production: Rhodovolum sulfidophilum vs Escherichia coli
    Publication . Pereira, Patrícia; Pedro, Augusto; Queiroz, João; Figueiras, Ana R.; Sousa, Fani
    RNA interference-based technologies have emerged as an attractive and effective therapeutic option with potential application in diverse human diseases. These tools rely on the development of efficient strategies to obtain homogeneous non-coding RNA samples with adequate integrity and purity, thus avoiding non-targeted gene-silencing and related side-effects that impair their application onto pre-clinical practice. These RNAs have been preferentially obtained by in vitro transcription using DNA templates or via chemical synthesis. As an alternative to overcome the limitations presented by these methods, in vivo recombinant production of RNA biomolecules has become the focus in RNA synthesis research. Therefore, using pre-miR-29b as a model, here it is evaluated the time-course profile of Escherichia coli and Rhodovolum sulfidophilum microfactories to produce this microRNA. As the presence of major host contaminants arising from the biosynthesis process may have important implications in the subsequent downstream processing, it is also evaluated the production of genomic DNA and host total proteins. Considering the rapidly growing interest on these innovative biopharmaceuticals, novel, more cost-effective, simple and easily scaled-up technologies are highly desirable. As microRNA recombinant expression fulfills those requirements, it may take the leading edge in the methodologies currently available to obtain microRNAs for clinical or structural studies.
  • Advances in time course extracellular production of human pre-miR-29b from Rhodovulum sulfidophilum
    Publication . Pereira, Patrícia; Pedro, Augusto; Tomás, Joana; Baptista, Cláudio; Queiroz, João; Figueiras, Ana; Sousa, Fani
    The present study reports the successful production of human pre-miR-29b both intra- and extracellularly in the marine phototrophic bacterium Rhodovulum sulfidophilum using recombinant RNA technology. In a first stage, the optimal transformation conditions (0.025 μg of plasmid DNA, with a heat-shock of 2 min at 35 °C) were established, in order to transfer the pre-miR-29b encoding plasmid to R. sulfidophilum host. Furthermore, the extracellular recovery of this RNA product from the culture medium was greatly improved, achieving quantities that are compatible with the majority of applications, namely for in vitro or in vivo studies. Using this system, the extracellular human pre-miR-29b concentration was approximately 182 μg/L, after 40 h of bacterial growth, and the total intracellular pre-miR-29b was of about 358 μg/L, at 32 h. At the end of the fermentation, it was verified that almost 87 % of cells were viable, indicating that cell lysis is minimized and that the extracellular medium is not highly contaminated with the host intracellular ribonucleases (RNases) and endotoxins, which is a critical parameter to guarantee the microRNA (miRNA) integrity. These findings demonstrate that pre-miRNAs can be produced by recombinant RNA technology, offering novel clues for the production of natural pre-miRNA agents for functional studies and RNA interference (RNAi)-based therapeutics.
  • Current progress on microRNAs-based therapeutics in neurodegenerative diseases
    Publication . Pereira, Patrícia; Queiroz, João; Figueiras, Ana; Sousa, Fani
    MicroRNAs (miRNAs)-based therapy has recently emerged as a promising strategy in the treatments of neurodegenerative diseases. Thus, in this review, the most recent and important challenges and advances on the development of miRNA therapeutics for brain targeting are discussed. In particular, this review highlights current knowledge and progress in the field of manufacturing, recovery, isolation, purification, and analysis of these therapeutic oligonucleotides. Finally, the available miRNA delivery systems are reviewed and an analysis is presented in what concerns to the current challenges that have to be addressed to ensure their specificity and efficacy. Overall, it is intended to provide a perspective on the future of miRNA-based therapeutics, focusing the biotechnological approach to obtain miRNAs. WIREs RNA 2017, 8:e1409. doi: 10.1002/wrna.1409 For further resources related to this article, please visit the WIREs website.