Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Environmental-chemical compatibility of granitic-mining waste for liner material
    Publication . Marchiori, Leonardo; Studart, André; Morais, Maria Vitoria; Albuquerque, Antonio; Andrade Pais, Luís; Cavaleiro, Victor
    Mining waste is generated from extracting mineral resources and, without proper disposal, can lead to negative environmental impacts because it can contain pollutants. Emerging studies of alternatives valorizing and reusing the residue through sustainable practices. Therefore, this research investigated the potential of granitic mining waste for waterproof liner materials, considering that most used liners, clays and geosynthetics, are increasingly scarce and costly solutions, respectively. This paper aims to analyze chemical compatibility, and microscopic structure of a granitic-mining mud to produce alternative material for liner construction. It was mixed in a clay at 25% and 50% ratio to develop a waste-based geocomposites. European limits for pollutants were respected for all mixtures, and the permeability remained less than 10-9m/s, which appears to be feasible for liners production. Thus, the valorization of mining waste as liner material arises as solution for creating new waste-based added-value product in the scope of circular economy.
  • Energy Harvesting Opportunities in Geoenvironmental Engineering
    Publication . Marchiori, Leonardo; Morais, Maria Vitoria; Studart, André; Albuquerque, Antonio; Andrade Pais, Luís; Ferreira Gomes, L.M.; Cavaleiro, Victor
    Geoenvironmental engineering involves defining solutions for complex problems, such as containment systems management, contaminant transport control, wastewater management, remediation of contaminated sites and valorization of geomaterials and wastes. In the last years, energy harvesting (EH)—or energy scavenging—methods and technologies have been developed to reduce the dependence on traditional energy sources, namely fossil fuels, and nuclear power, also responding to the increase in energy demands for human activities and to fulfill sustainable development goals. EH in geoenvironmental works and the surrounding soil and water environment includes a set of processes for capturing and accumulating energy from several sources considered wasted or unusable associated with soil dynamics; the stress and strain of geomaterials, hydraulic, vibrations, biochemical, light, heating and wind sources can be potential EH systems. Therefore, this work presents a review of the literature and critical analysis on the main opportunities for EH capturing, accumulating and use in geoenvironmental works, among basic electric concepts and mechanisms, analyzing these works in complex conditions involving biological-, chemical-, mechanical-, hydraulic- and thermal-coupled actions, concluding with the main investigation and challenges within geoenvironmental aspects for EH purposes.