Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Mitoxantrone-loaded lipid nanoparticles for breast cancer therapy – quality-by-design approach and efficacy assessment in 2D and 3D in vitro cancer modelsPublication . Granja, Andreia; Sousa, Rita Lima; Alves, Cátia; Diogo, Duarte de Melo; Pinheiro, Marina; Sousa, Célia T.; Correia, I.J.; Reis, SaletteBreast cancer is the leading cause of cancer-related deaths among women worldwide. The conventional chemotherapeutic regimens used in the treatment of this disease often lead to severe side-effects and reduced efficacy. In this study, a novel drug delivery system for the chemotherapeutic drug mitoxantrone (Mito) was developed using solid lipid nanoparticles (SLN). The production of the SLN was carried out using an organic-solvent-free, low-cost method and optimized using a Box-Behnken design. SLN presented adequate size for cancer-related applications, more than 90% of EE% and remained stable for at least 6 months. A much higher drug release was obtained at acidic pH (mimicking the endosomal compartment) than plasmatic pH, highlighting the potential of the nanosystem for tumor drug delivery. Additionally, SLN were non-hemolytic and cytocompatible, even at high concentrations of lipid. A significantly higher anti-cancer efficacy was obtained for Mito-loaded SLN comparing to the free drug at different concentrations in MCF-7 2D models. Finally, the nanoformulation was evaluated in heterotypic breast cancer spheroids showing capacity to penetrate the tridimensional structure and ability to induce a high anti-tumoral effect, similarly to the free drug. Overall, these results support that the developed SLN are effective Mito nanocarriers for the treatment of breast cancer.
- Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancerPublication . Granja, Andreia; Lima-Sousa, Rita; Alves, Cátia; de Melo-Diogo, Duarte; Nunes, Cláudia; Sousa, Célia T.; Correia, I.J.; Reis, SalettePhotothermal therapy has emerged as a new promising strategy for the management of cancer, either alone or combined with other therapeutics, such as chemotherapy. The use of nanoparticles for multimodal therapy can improve treatment performance and reduce drug doses and associated side effects. Here we propose the development of a novel multifunctional nanosystem based on solid lipid nanoparticles co-loaded with gold nanorods and mitoxantrone and functionalized with folic acid for dual photothermal therapy and chemotherapy of breast cancer. Nanoparticles were produced using an economically affordable method and presented suitable physicochemical properties for tumor passive accumulation. Upon Near-Infrared irradiation (808 nm, 1.7 W cm -2, 5 min), nanoparticles could effectively mediate a temperature increase of >20 ◦C. Moreover, exposure to light resulted in an enhanced release of Mitoxantrone. Furthermore, nanoparticles were non-hemolytic and well tolerated by healthy cells even at high concentrations. The active targeting strategy was found to be successful, as shown by the greater accumulation of the functionalized nanoparticles in MCF-7 cells. Finally, the combined effects of chemotherapy, light-induced drug release and photothermal therapy significantly enhanced breast cancer cell death. Overall, these results demonstrate that the developed lipid nanosystem is an efficient vehicle for breast cancer multimodal therapy.