Repository logo
 
Loading...
Profile Picture
Person

Pedro de Jesus Marto, João

Search Results

Now showing 1 - 2 of 2
  • Classical and quantum cosmology of the little rip abrupt event
    Publication . Albarran, Imanol; Bouhmadi Lopez, Mariam; Kiefer, Claus; Marto, João; Moniz, Paulo
    We analyze from a classical and quantum point of view the behavior of the universe close to a little rip, which can be interpreted as a big rip sent towards the infinite future. Like a big rip singularity, a little rip implies the destruction of all bounded structure in the Universe and is thus an event where quantum effects could be important. We present here a new phantom scalar field model for the little rip. The quantum analysis is performed in quantum geometrodynamics, with the Wheeler-DeWitt equation as its central equation. We find that the little rip can be avoided in the sense of the DeWitt criterion, that is, by having a vanishing wave function at the place of the little rip. Therefore our analysis completes the answer to the question: can quantum cosmology smoothen or avoid the divergent behavior genuinely caused by phantom matter? We show that this can indeed happen for the little rip, similar to the avoidance of a big rip and a little sibling of the big rip.
  • K-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration
    Publication . Bouhmadi Lopez, Mariam; Kumar, K. Sravan; Marto, João; Morais, João; Zhuk, Alexander
    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K-essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K-essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K-essence models: (i) the pure kinetic K-essence field, (ii) a K-essence with a constant speed of sound and (iii) the K-essence model with the Lagrangian bX+cX2−V(phi). We demonstrate that if the K-essence is coupled, all these K-essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.