Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Preparation of functionalized poly(caprolactone diol)/castor oils blends to be applied as photocrosslinkable tissue adhesivesPublication . Cernadas, Maria Teresa; Morgado, Stacy; Alves, Patrícia; Gonçalves, Filipa A. M. M.; Correia, T.R.; Correia, I.J.; Ferreira, PaulaPolycaprolactone (PCL) and PCL-based materials are widely applied in the biomedical field, however, their slow biodegradation profile makes them more suitable to be used in hard tissues, where healing requires longer periods of time. In order to adjust their properties to suit for soft tissues applications, PCL can be blended with other biodegradable materials in order to tune its degradation rate. Herein, polymeric blends of PCL and castor oil (CO) were prepared after their chemical modification with 2-isocyanatoethylmethacrylate (IEMA) in order to be applied as photocrosslinkable tissue adhesives. These functionalized macromers were chemically characterized and used to prepare polymeric blends (PCL-IEMA/CO-IEMA) with variable mass proportions. A biocompatible photoinitiator (Irgacure 2959) was added to these macromers blends which were then irradiated under UV light. The feasibility of the prepared materials as tissue adhesives was evaluated by assessment of their chemical/physical properties as well as their interaction with blood. Moreover, their cytotoxic profile was also evaluated through in vitro studies using human dermal fibroblasts as model cells.
- Functionalized polyester-based materials as UV curable adhesivesPublication . Cernadas, Maria Teresa; Santos, Marta; Gonçalves, Filipa A.M.M.; Alves, P.; Correia, T.R.; Correia, I.J.; Ferreira, PaulaUV curable adhesives offer major advantages in comparison to other polymeric based adhesive systems, such as fast-curing rate and control of the polymerization heat evolution, being ideal for application on damaged tissues. Herein, functionalized polymers were prepared by modifying polycaprolactone diol (PCL) with an isocyanate-functional unsaturated acrylic ester, Laromer® 9000, using two different proportions. These functionalized materials were chemically/physically characterized and, after the addition of a biocompatible photoinitiator (Irgacure® 2959), were crosslinked by UV light irradiation. Such procedure allows the obtention of flexible transparent films. Films’ properties such as swelling, hydrolytic degradation, thermal stability, surface energy and adhesive capacity were evaluated. Furthermore, to assess the applicability of the films in biomedical applications, their haemocompatibility and biocompatibility were determined using human dermal fibroblasts as model.