Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization
    Publication . Nunes, H.G.G.; Pombo, José Álvaro Nunes; Mariano, S.; Calado, M. do Rosário; Felippe de Souza, J.A.M.
    Determining the mathematical model parameters of photovoltaic (PV) cells and modules represents a great challenge. In the last few years, several analytical, numerical and hybrid methods have been proposed for extracting the PV model parameters from datasheets provided by the manufacturers or from experimental data, although it is difficult to determine highly reliable solutions quickly and accurately. In this paper, we propose a new method for determining the PV parameters of both the single-diode and the double-diode models, based on the guaranteed convergence particle swarm optimization (GCPSO), using experimental data under different operating conditions. The main advantage of this method is its ability to avoid premature convergence in the optimization of complex and multimodal objective functions, such as the function that determines PV parameters. To validate performance, the GCPSO method was compared with several analytical, numerical and hybrid methods found in the literature. This validation considered three different case studies. The first two are important reference case studies in the literature and have been widely used by researchers. The third was performed in an experimental environment, in order to test the proposed method under a real implementation. The proposed methodology can find highly accurate solutions while demanding a reduced computational cost. Comparisons with other published methods demonstrate that the proposed method produces very good results in the extraction of the PV model parameters.
  • A Modified Multidimension Diode Model for PV Parameters Identification Using Guaranteed Convergence Particle Swarm Optimization Algorithm
    Publication . Nunes, H.G.G.; Bento, P.M.R.; Pombo, José Álvaro Nunes; Mariano, S.; Calado, M. do Rosário
    This paper proposes a modified multidimension diode model to identify the photovoltaic (PV) parameters using the guaranteed convergence particle swarm optimization algorithm. The main advantage of this model is that it allows adjusting the number of diodes of the PV model by finding the configuration that most accurately characterizes a PV device under a certain operating condition and of different PV technologies. The proposed model was validated from experimental data measured at different irradiance and temperature levels, as well as for six different PV technologies. The results show that the model is able to accurately characterize the behaviour of PV devices.