Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Power Management Control Strategy Based on Artificial Neural Networks for Standalone PV Applications with a Hybrid Energy Storage System
    Publication . Faria, João; Pombo, José; Calado, M. do Rosário; Mariano, S.
    Standalone microgrids with photovoltaic (PV) solutions could be a promising solution for powering up off-grid communities. However, this type of application requires the use of energy storage systems (ESS) to manage the intermittency of PV production. The most commonly used ESSs are lithium-ion batteries (Li-ion), but this technology has a low lifespan, mostly caused by the imposed stress. To reduce the stress on Li-ion batteries and extend their lifespan, hybrid energy storage systems (HESS) began to emerge. Although the utilization of HESSs has demonstrated great potential to make up for the limitations of Li-ion batteries, a proper power management strategy is key to achieving the HESS objectives and ensuring a harmonized system operation. This paper proposes a novel power management strategy based on an artificial neural network for a standalone PV system with Li-ion batteries and super-capacitors (SC) HESS. A typical standalone PV system is used to demonstrate and validate the performance of the proposed power management strategy. To demonstrate its effectiveness, computational simulations with short and long duration were performed. The results show a minimization in Li-ion battery dynamic stress and peak current, leading to an increased lifespan of Li-ion batteries. Moreover, the proposed power management strategy increases the level of SC utilization in comparison with other well-established strategies in the literature.
  • Glowworm Swarm Optimization for photovoltaic model identification
    Publication . Nunes, H.G.G.; Pombo, José; Fermeiro, J.B.L.; Mariano, S.; Calado, M. do Rosário
    This paper presents a new algorithm for finding the parameters that characterize a photovoltaic panel by using the Glowworm Swarm Optimization algorithm. This new algorithm shows great simplicity, flexibility and precision, being able to precisely locate the global optimum point or multiple global optimum points, independently of the initial conditions. The approach here adopted allows the utilization of the algorithm in several existing models to characterize a photovoltaic panel in the current literature.
  • Optimal Sizing of Renewable Energy Communities: A Multiple Swarms Multi-Objective Particle Swarm Optimization Approach
    Publication . Faria, João; Marques, Carlos; Pombo, José; Mariano, Sílvio; Calado, M. do Rosário
    Renewable energy communities have gained popularity as a means of reducing carbon emissions and enhancing energy independence. However, determining the optimal sizing for each production and storage unit within these communities poses challenges due to conflicting objectives, such as minimizing costs while maximizing energy production. To address this issue, this paper employs a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm with multiple swarms. This approach aims to foster a broader diversity of solutions while concurrently ensuring a good plurality of nondominant solutions that define a Pareto frontier. To evaluate the effectiveness and reliability of this approach, four case studies with different energy management strategies focused on real-world operations were evaluated, aiming to replicate the practical challenges encountered in actual renewable energy communities. The results demonstrate the effectiveness of the proposed approach in determining the optimal size of production and storage units within renewable energy communities, while simultaneously addressing multiple conflicting objectives, including economic viability and flexibility, specifically Levelized Cost of Energy (LCOE), Self-Consumption Ratio (SCR) and Self-Sufficiency Ratio (SSR). The findings also provide valuable insights that clarify which energy management strategies are most suitable for this type of community.
  • Spot price forecasting for best trading strategy decision support in the Iberian electricity market
    Publication . Magalhães, Bianca G.; Bento, Pedro M. R.; Pombo, José; Calado, M. do Rosário; Mariano, Sílvio J. P S.
    The increasing volatility in electricity markets has reinforced the need for better trading strategies by both sellers and buyers to limit the exposure to losses. Accordingly, this paper proposes an electricity trading strategy based on a mid-term forecast of the average spot price and a risk premium analysis based on this forecast. This strategy can help traders (buyers and sellers) decide whether to trade in the futures market (of varying monthly maturity) or to wait and trade in the spot market. The forecast model consists of an Artificial Neural Network trained with the Long Short Term Memory architecture to predict the average monthly spot prices, using only market price-related data as input variables. Statistical analysis verified the correlation and dependency between variables. The forecast model was trained, validated and tested with price data from the Iberian Electricity Market (MIBEL), in particular the Spanish zone, between January 2015 and August 2019. The last year of this period was reserved for testing the performance of the proposed forecast model and trading strategy. For comparison purposes, the results of a forecasting model trained with the Extreme Learning Machine over the same period are also presented. In addition, the forecasted value of the average monthly spot price was used to perform a risk premium analysis. The results were promising, as they indicated benefits for traders adopting the proposed trading strategy, proving the potential of the forecast model and the risk premium analysis based on this forecast.