Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Nano‐in‐Micro POxylated Polyurea Dendrimers and Chitosan Dry Powder Formulations for Pulmonary DeliveryPublication . Restani, Rita; Silva, A. Sofia; Pires, Rita; Cabral, Renato; Correia, Ilídio Joaquim Sobreira; Casimiro, Teresa; Bonifácio, Vasco; Ricardo, Ana AguiarPulmonary administration offers excellent advantages over conventional drug delivery routes, including increasing therapeutics bioavailability, and avoiding long‐term safety issues. Formulations of nano‐in‐micro dry powders for lung delivery are engineered using (S)‐ibuprofen as a model drug. These biodegradable formulations comprise nanoparticles of drug‐loaded POxylated polyurea dendrimers coated with chitosan using supercritical‐fluid‐assisted spray drying. The formulations are characterized in terms of morphology, particle‐size distribution, in vitro aerodynamic particle pulmonary distribution, and glutathione‐S‐transferase assay. It is demonstrated that ibuprofen‐loaded nanoparticles can be successfully incorporated into microspheres with adequate aerodynamic properties, mass median aerodynamic diameter (1.86–3.83 μm), and fine particle fraction (28%–45%), for deposition into the deep lung. The (S)‐ibuprofen dry powder formulations show enhanced solubility, high swelling behavior and a sustained drug release at physiologic pH. Also, POxylated polyureas decrease the (S)‐ibuprofen toxic effect on cancer cellular growth. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assays show no significant cytotoxicity on the metabolic activity of human lung adenocarcinoma ephithelial (A549) cell line for the lowest concentration (1 × 10−3 m), even for longer periods of contact with the cells (up to 120 h), and in the normal human dermal fibroblasts cell line the toxic effect is also reduced.
- Design of oligoaziridine-PEG coatings for efficient nanogold cellular biotaggingPublication . Silva, A. Sofia; Bonifácio, Vasco; Raje, Vivek; Branco, Paula S.; Machado, Paulo Filipe Brito; Correia, Ilídio Joaquim Sobreira; Ricardo, Ana AguiarGold nanoparticles (AuNPs) are the most investigated nanomaterials for theragnosis applications. In a research field where live cell assays, as well as the tracking of nanomaterials into a cell's environment, are of extremely importance, water-soluble AuNPs have been intensively studied to overcome the toxic effects exerted by coatings. Unfortunately, AuNPs fluorescent tagging often fails due to self-quenching and a careful design must be carried out to maintain optoelectronic properties and biocompatibility. In this work, the synthesis of fluorescent gold nanoprobes, able to enter the cell's environment (biotags) and target the cell nucleus, was designed and the particles tracked by confocal laser scanning microscopy. The coating of AuNPs with maleimide poly(ethylene glycol) and fluorescent oligoaziridine biocompatible oligomers, resulted in robust, optically active biotags that open novel insights into cancer theragnosis.
- Aerosolizable gold nano-in-micro dry powder formulations for theragnosis and lung deliveryPublication . Silva, A. Sofia; Sousa, Ana M. L.; Cabral, Renato; Silva, Marta; Sequeira, Clarinda Costa; Miguel, Sónia; Bonifácio, Vasco; Casimiro, Teresa; Correia, I.J.; Ricardo, Ana AguiarFunctionalized gold nanoparticles (AuNPs) have been widely investigated as promising multifunctional nanosystems for the theragnosis of lung cancer, the most common and prominent cause of cancer death worldwide. Nevertheless, nanoparticles are not in appropriate sizes for an accurate deep lung delivery and the lack of locally and effective delivery of therapeutic biomolecules to the deep lungs is, in fact, the major cause of low therapeutic outcome. Herein we incorporate, for the first time, AuNPs into respirable microparticles. AuNPs were functionalized with biocompatible oligo(2-oxazoline)-based optically stable fluorescent coatings, and conjugated with a laminin peptide (YIGSR) for targeted lung cancer delivery. These POxylated AuNPs were then incorporated into a chitosan matrix by a clean process, supercritical CO2-assisted spray drying (SASD), yielding nano-in-micro clean ultrafine dry powder formulations. The engineered formulations present the adequate morphology and flowability to reach the deep lung, with aerodynamic sizes ranging 3.2–3.8 μm, and excellent fine particle fraction (FPF) (FPF of 47% for CHT-bearing targeted AuNPs). The optimal biodegradation and release profiles enabled a sustained and controlled release of the embedded nanoparticles, with enhanced cellular uptake, opening new prospects for future lung theragnosis.
- Nanogold POxylation: towards always-on fluorescent lung cancer targetingPublication . Silva, A. Sofia; Silva, Marta; Miguel, Sónia P.; Bonifácio, Vasco; Correia, Ilídio Joaquim Sobreira; Ricardo, Ana AguiarGold nanoparticles (GNPs) are one of most investigated nanomaterials for lung cancer diagnosis and therapy (theragnosis). For imaging purposes, GNPs are often tagged with fluorescent probes, but unfortunately the associated plasmon resonance effect leads to fluorescence self-quenching, thus precluding accurate localization. In this study, biocompatible GNPs targeted with a laminin fragment were successfully engineered using fluorescent oligo-oxazolines produced in supercritical carbon dioxide. The architecture and properties of the POxylated constructs were fully characterized and confocal laser scanning microscopy measurements demonstrated a higher cellular uptake into A549 lung cancer cells through an active targeting mechanism.