Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Design of oligoaziridine-PEG coatings for efficient nanogold cellular biotaggingPublication . Silva, A. Sofia; Bonifácio, Vasco; Raje, Vivek; Branco, Paula S.; Machado, Paulo Filipe Brito; Correia, Ilídio Joaquim Sobreira; Ricardo, Ana AguiarGold nanoparticles (AuNPs) are the most investigated nanomaterials for theragnosis applications. In a research field where live cell assays, as well as the tracking of nanomaterials into a cell's environment, are of extremely importance, water-soluble AuNPs have been intensively studied to overcome the toxic effects exerted by coatings. Unfortunately, AuNPs fluorescent tagging often fails due to self-quenching and a careful design must be carried out to maintain optoelectronic properties and biocompatibility. In this work, the synthesis of fluorescent gold nanoprobes, able to enter the cell's environment (biotags) and target the cell nucleus, was designed and the particles tracked by confocal laser scanning microscopy. The coating of AuNPs with maleimide poly(ethylene glycol) and fluorescent oligoaziridine biocompatible oligomers, resulted in robust, optically active biotags that open novel insights into cancer theragnosis.
- Nanogold POxylation: towards always-on fluorescent lung cancer targetingPublication . Silva, A. Sofia; Silva, Marta; Miguel, Sónia P.; Bonifácio, Vasco; Correia, Ilídio Joaquim Sobreira; Ricardo, Ana AguiarGold nanoparticles (GNPs) are one of most investigated nanomaterials for lung cancer diagnosis and therapy (theragnosis). For imaging purposes, GNPs are often tagged with fluorescent probes, but unfortunately the associated plasmon resonance effect leads to fluorescence self-quenching, thus precluding accurate localization. In this study, biocompatible GNPs targeted with a laminin fragment were successfully engineered using fluorescent oligo-oxazolines produced in supercritical carbon dioxide. The architecture and properties of the POxylated constructs were fully characterized and confocal laser scanning microscopy measurements demonstrated a higher cellular uptake into A549 lung cancer cells through an active targeting mechanism.