Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Electrochemical Recovery of Phosphorus from Simulated and Real Wastewater: Effect of Investigational Conditions on the Process EfficiencyPublication . Sousa, Carlos Y.; Fernandes, Annabel; Amaro, Albertina; Pacheco, Maria José; Ciríaco, Lurdes; Lopes, AnaThe development of recovery processes has become essential in recent years as a strategy to minimize environmental pollution while boosting circular economy and sustainable development. Due to the exponential growth in agricultural production and the increased pollution of waterbodies, the production of fertilizers from recovered phosphorus has become an alternative to phosphate rock-based production. In this work, the effect of different operational parameters in the efficiency of the electrochemical recovery of phosphorus, from organic and inorganic sources, was investigated. Among the studied variables, the most significant was the electrode material utilized in the system. The use of magnesium sacrificial electrodes, as AZ31 alloys, led to phosphorus removal from solution of above 90%, allowing the recovery of both orthophosphates and organic phosphorus (glyphosate) as struvite, brucite, and other amorphous compounds. Since there is a lack in the literature about the use of magnesium electrodes in real wastewater electrochemical treatment, system efficiency was also evaluated using a sanitary landfill leachate, reaching 96% of phosphorus recovery. The specific energy consumption and faradaic efficiency of the phosphorus recovery process were also assessed.
- Reuse of Pretreated Agro-Industrial Wastewaters for Hydroponic Production of LettucePublication . Afonso, Alexandra; Regato, Mariana; Patanita, Mariana; Luz, Silvana; Carvalho, Maria João; Fernandes, Annabel; Lopes, Ana; Almeida, Adelaide; Costa, Idália; Carvalho, FátimaThe utilization of agro-industrial wastewaters (AIWWs), pretreated by immediate one-step lime precipitation + natural carbonation, as a nutritive solution for the hydroponic production of lettuce was evaluated. The AIWWs studied were olive mill wastewater (OMW), winery wastewater (WW), and cheese whey wastewater (CWW). Lettuces (Lactuca sativa L. var. crispa) were grown in a closed nutrient film technique hydroponic system, using the pretreated AIWWs (OMW-T, WW-T, and CWW-T) and a control nutrient solution (CNS). The growth and sensory analysis of lettuces and the environmental parameters of effluents after hydroponics were evaluated. The average number of lettuce leaves obtained with nutrient solutions prepared with AIWW-T was lower than that from CNS, but the highest lettuce chlorophyll content was attained with CWW-T, which also presented the best grow results. In general, sensory analysis did not show significant differences from the lettuces grown in the different pretreated AIWWs and CNS. As for the environmental parameters of the effluents from hydroponics, according to the Portuguese legislation, only the chemical oxygen demand of the OMW-T and WW-T presented slightly higher values than that of the environmental limit values for discharge in surface waters, showing the feasibility of using pretreated agro-industrial effluents in hydroponic lettuce cultivation, while obtaining a treated effluent, in a circular economy perspective.