Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • K-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration
    Publication . Bouhmadi Lopez, Mariam; Kumar, K. Sravan; Marto, João; Morais, João; Zhuk, Alexander
    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K-essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K-essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K-essence models: (i) the pure kinetic K-essence field, (ii) a K-essence with a constant speed of sound and (iii) the K-essence model with the Lagrangian bX+cX2−V(phi). We demonstrate that if the K-essence is coupled, all these K-essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.
  • Interacting 3-form dark energy models: distinguishing interactions and avoiding the Little Sibling of the Big Rip
    Publication . Morais, João; Bouhmadi Lopez, Mariam; Kumar, K. Sravan; Marto, João; Tavakoli, Yaser
    In this paper we consider 3-form dark energy (DE) models with interactions in the dark sector. We aim to distinguish the phenomenological interactions that are defined through the dark matter (DM) and the DE energy densities. We do our analysis mainly in two stages. In the first stage, we identify the non-interacting 3-form DE model which generically leads to an abrupt late-time cosmological event which is known as the little sibling of the Big Rip (LSBR). We classify the interactions which can possibly avoid this late-time abrupt event. We also study the parameter space of the model that is consistent with the interaction between DM and DE energy densities at present as indicated by recent studies based on BAO and SDSS data. In the later stage, we observationally distinguish those interactions using the statefinder hierarchy parameters {S3(1),S4 (1)},{S3 (1),S5 (1)} . We also compute the growth factor parameter ε(z) for the various interactions we consider herein and use the composite null diagnostic (CND) {S3(1), ε(z)} as a tool to characterise those interactions by measuring their departures from the concordance model. In addition, we make a preliminary analysis of our model in light of the recently released data by SDSS~III on the measurement of the linear growth rate of structure.