Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Crop Yield Estimation Using Deep Learning Based on Climate Big Data and Irrigation Scheduling
    Publication . Alibabaei, Khadijeh; Gaspar, Pedro Dinis; Lima, Tânia M.
    Deep learning has already been successfully used in the development of decision support systems in various domains. Therefore, there is an incentive to apply it in other important domains such as agriculture. Fertilizers, electricity, chemicals, human labor, and water are the components of total energy consumption in agriculture. Yield estimates are critical for food security, crop management, irrigation scheduling, and estimating labor requirements for harvesting and storage. Therefore, estimating product yield can reduce energy consumption. Two deep learning models, Long Short-Term Memory and Gated Recurrent Units, have been developed for the analysis of time-series data such as agricultural datasets. In this paper, the capabilities of these models and their extensions, called Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Units, to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate end-of-season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The Bidirectional Long Short-Term memory outperformed the Gated Recurrent Units network, the Long Short-Term Memory, and the Bidirectional Gated Recurrent Units network on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039. The performance of the Bidirectional Long Short-Term Memory in the test was compared with the most commonly used deep learning method, the Convolutional Neural Network, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest Regression. The Bidirectional Long Short-Term Memory outperformed the other models with an R2 score between 0.97 and 0.99. The results show that analyzing agricultural data with the Long Short-Term Memory model improves the performance of the model in terms of accuracy. The Convolutional Neural Network model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season.
  • A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities
    Publication . Alibabaei, Khadijeh; Gaspar, Pedro Dinis; Lima, Tânia M.; Campos, Maria Do Rosario Castiço De; Girão, Inês; Monteiro, Jorge; Lopes, Carlos M.
    Deep Learning has been successfully applied to image recognition, speech recognition, and natural language processing in recent years. Therefore, there has been an incentive to apply it in other fields as well. The field of agriculture is one of the most important fields in which the application of deep learning still needs to be explored, as it has a direct impact on human well-being. In particular, there is a need to explore how deep learning models can be used as a tool for optimal planting, land use, yield improvement, production/disease/pest control, and other activities. The vast amount of data received from sensors in smart farms makes it possible to use deep learning as a model for decision-making in this field. In agriculture, no two environments are exactly alike, which makes testing, validating, and successfully implementing such technologies much more complex than in most other industries. This paper reviews some recent scientific developments in the field of deep learning that have been applied to agriculture, and highlights some challenges and potential solutions using deep learning algorithms in agriculture. The results in this paper indicate that by employing new methods from deep learning, higher performance in terms of accuracy and lower inference time can be achieved, and the models can be made useful in real-world applications. Finally, some opportunities for future research in this area are suggested.