Loading...
Research Project
Innovative Radio Resource Management and Optimization of Personal 5G Heterogeneous Mobile Communication networks
Funder
Authors
Publications
Impact of considering the ITU-R two slope propagation model in the system capacity trade-off for LTE-A HetNets with small cells
Publication . Sousa, Sofia; Velez, Fernando; Peha, Jon
This work aims at understanding and evaluating the impact of using different path loss models in the optimization trade-off of small cell (SC) networks. In LTE-A, the more realistic propagation models are the more efficient the radio and network optimization becomes. In this work we compare four urban path loss models: the urban/vehicular and pedestrian test environment from the ITU-R M. 1255 Report as well as the two slope Micro Urban Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) from the ITU-R 2135 Report. The two-slope model considers the existence of a breakpoint in the behaviour of the path loss and yields a significantly lower throughput per square km than a traditional one-slope model if and only if cell radius is small (coverage distances, R, up to breakpoint distance divided by the reuse pattern).
Impact of the propagation model on the capacity in small‐cell networks: comparison between the UHF/SHF and the millimetre wavebands
Publication . Teixeira, Emanuel; Sousa, Sofia; Velez, Fernando J.; Peha, Jon
This work shows how both frequency and the election of path loss model affect estimated spectral efficiency. Six different frequency bands are considered, ranging from 2.6 GHz in the Ultra High Frequency (UHF) band to 73 GHz in the millimetre wave bands (mmWaves), using both single-slope and two-slope path-loss models. We start by comparing four ur ban path loss models for UHF: the urban/vehicular and pedestrian test environment from the ITU-R M. 1255 Report, which includes the two-slope urban micro line-of-sight (LoS) and NLoS, from the ITU-R 2135 Report. Then, we consider mmWaves taking into con26 sideration the modified Friis propagation model, followed by an analysis of the through put for the 2.6, 3.5, 28, 38, 60 and 73 GHz frequency bands. We have found that the signal to-interference-plus-noise ratio, as estimated with the more realistic two-slope model, is lower for devices that are within the break-point of the transmitter, which is a small dis tance in the UHF/SHF band. As a result, spectral efficiency is higher with mmWaves than with UHF/SHF spectrum when cell radius is under 40 meters but not when cells are larger. Consequently, mmWaves spectrum will be more valuable as cells get small. We also find that capacity as estimated with the two-slope model is considerably smaller than one would obtain with the one-slope model when cells are small but there is little difference in the models when cells are larger. Thus, as cells get smaller, the use of one slope models may underestimate the number of cells that must be deployed.
Impact of propagation model on capacity in small-cell networks
Publication . Sousa, Sofia; Velez, Fernando; Peha, Jon
This work evaluates the impact of different path loss models on capacity of small cell (SC) networks, including the relationship between cell size and capacity. We compare four urban path loss models: the urban/vehicular and pedestrian test environment from the ITU-R M. 1255 Report, and the two-slope Micro Urban Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) models from the ITU-R 2135 Report. We show that when using the ITU-R two-slope model that considers the existence of a break-point in the behaviour of path loss, for coverage distances, R, up to break-point distance divided by reuse factor, supported cell throughput, Rb-sup, is much lower than expected when traditional single-slope models are assumed. For Rs longer than dBP/rcc the results for Rb-sup increase with R, whereas they are steady or decrease with R when using the traditional single-slope propagation models. We conclude that the two-slope propagation model yields a significantly lower throughput per square km than a traditional one-slope model if and only if cell radius is small.
Performance enhancement of IEEE 802.15.4 by employing RTS/CTS and frame concatenation
Publication . Barroca, Norberto; Velez, Fernando J.; Borges, Luís M.; Chatzimisios, Periklis
IEEE 802.15.4 has been widely accepted as the de facto standard for wireless sensor networks (WSNs). However, as in their current solutions for medium access control (MAC) sub-layer protocols, channel efficiency has a margin for improvement, in this study, the authors evaluate the IEEE 802.15.4 MAC sub-layer performance by proposing to use the request-/clear-to-send (RTS/CTS) combined with frame concatenation and block acknowledgement (BACK) mechanism to optimise the channel use. The proposed solutions are studied in a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under channel environments without/with transmission errors for both the chirp spread spectrum and direct sequence spread spectrum physical layers for the 2.4 GHz Industrial, Scientific and Medical band. Simulation results successfully verify the authors’ proposed analytical model. For more than seven TX (aggregated frames) all the MAC sub-layer protocols employing RTS/CTS with frame concatenation (including sensor BACK MAC) allow for optimising channel use in WSNs, corresponding to 18–74% improvement in the maximum average throughput and minimum average delay, together with 3.3–14.1% decrease in energy consumption.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BSAB/113798/2015