Repository logo
 
Loading...
Project Logo
Research Project

UC-NMR: a voyage from chemical space to biological function

Authors

Publications

Synthesis, functionalization and characterization of UV-curable lactic acid based oligomers to be used as surgical adhesives
Publication . Santos, João; Marques, Dina; Alves, Patrícia; Correia, Tiago R.; Correia, Ilídio Joaquim Sobreira; Baptista, Cristina Maria dos Santos Gaudêncio; Ferreira, Paula
The synthesis, functionalization and characterization of low molecular weight L-lactic acid based oligomers to be used as new UV-curable bioadhesives are presented herein. Prepolymers hydroxyl terminated were produced by L-lactic acid dehydration with 1,4-butanediol. The prepolymer was further modified with photoreactive sites by adding an isocyanate-functional unsaturated acrylic ester, which was used for the first time in the biomedical field (LAROMER® LR 9000). Films were afterwards produced upon UV irradiation for 120 s, using a biocompatible photoinitiator (Irgacure® 2959), and finally characterized. The synthesized films exhibited a moderate swelling ratio, suitable for the envisioned application. DSC analysis confirmed an increase in Tg values after each synthesis step. Nevertheless, the film Tg remains lower than the physiological and room temperature. TGA confirmed an improved stability of films at high temperatures. The in vitro degradation tests showed their susceptibility to hydrolysis at 37 °C, suitable for short-term uses. Preliminary evaluation of the adhesion capacity suggested that the synthesized material may be effective in sustaining wound closure and repair. The surface energy was also measured and its value was lower than the ones from blood or skin which supports the previous statement. Blood compatibility studies, cell viability assays (using human dermal fibroblasts) and bacterial inhibition tests (using two bacteria models) were performed. The results indicated that cured adhesive is bio/haemocompatible and possesses antimicrobial activity. Altogether, characterization results showed that the produced material presented a set of properties suitable for biomedical applications, particularly as a surgical adhesive.
Dextran-Based Injectable Hydrogel Composites for Bone Regeneration
Publication . Alves, Patrícia; Simão, Ana Filipa; Graça, Mariana F. P.; Mariz, Marcos; Correia, I.J.; Ferreira, Paula
Currently, bone infections caused by diseases or injuries are a major health issue. In addition, the conventional therapeutic approaches used to treat bone diseases or injuries present several drawbacks. In the area of tissue engineering, researchers have been developing new alternative therapeutic approaches, such as scaffolds, to promote the regeneration of injured tissues. Despite the advantages of these materials, most of them require an invasive surgical procedure. To overcome these problems, the main focus of this work was to develop scaffolds for bone regeneration, which can be applied using injectable hydrogels that circumvent the use of invasive procedures, while allowing for bone regeneration. Throughout this work, injectable hydrogels were developed based on a natural polymer, dextran, along with the use of two inorganic compounds, calcium β-triphosphate and nanohydroxyapatite, that aimed to reinforce the mechanical properties of the 3D mesh. The materials were chemically characterized considering the requirements for the intended application: the swelling capacity was evaluated, the degradation rate in a simulated physiological environment was assessed, and compression tests were performed. Furthermore, vancomycin was incorporated into the polymeric matrices to obtain scaffolds with antibacterial performance, and their drug release profile was assessed. The cytotoxic profile of the hydrogels was assessed by an MTS assay, using osteoblasts as model cells. The data obtained demonstrated that dextran-based hydrogels were successfully synthesized, with a drug release profile with an initial burst between 50 and 80% of the drug. The hydrogels possess fair biocompatibility. The swelling capacity showed that the stability of the samples and their degradation profile is compatible with the average time period required for bone regeneration (usually about one month) and have a favorable Young’s modulus (200–300 kPa). The obtained hydrogels are well-suited for bone regeneration applications such as infections that occur during implantation or bone graft substitutes with antibiotics.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876-PPCDTI

Funding Award Number

RECI/QEQ-QFI/0168/2012

ID