Loading...
Research Project
Pavimentos betuminosos permeáveis na mitigação e adaptação às alterações climáticas
Funder
Authors
Publications
Hydraulic Conductivity of the Permeable Asphalt Pavement – Laboratory vs In Situ Test
Publication . Afonso, Márcia Isabel Lopes; Santos, Tiago Silva; Fael, Cristina Maria Sena; Almeida, Marisa S.Dinis
Permeable asphalt pavements (PAP) are a key measure for mitigating the climate change effects in urban areas. Cities are becoming increasingly dense and have large areas of waterproofing due to the excessive construction of buildings and highways that prevent the rainwater drainage into the soil. Recently, the PAP study with a double layer porous asphalt (DLPA) has been an alternative to the use of a porous asphalt single layer (PA), with recognized advantages in increasing water infiltration and, consequently, in decreasing surface runoff. It was developed in field a PAP of small dimensions to assess its capacity to respond to floods. The
purpose of this study is to evaluate the hydraulic conductivity (K) of the DLPA applied on the PAP, both in laboratory conditions and in field conditions, and verify the representativeness of the laboratory results in relation to the results obtained in situ. In laboratory terms, the LCS permeameter was used, which evaluates the vertical and horizontal hydraulic conductivity, both in specimens produced in the laboratory and in cores extracted in situ. In the field, the LCS permeameter and the falling head permeameter were used to measure the hydraulic conductivity and the relative hydraulic conductivity (HC), respectively. The laboratory tests were performed according to Standards EN 12697-19 and NLT 327 and the in situ tests according to Standards
EN 12697-40 and NLT 327. It was verified that the specimens produced in the laboratory of the two porous layers showed values of K (vertical and horizontal) lower than those obtained in the field cores, both for the individual layers PA and for the DLPA. Thus, it was found that the study in controlled environment differs in terms of results. This divergence justified the need to perform a field study in order to perceive the actual performance of the PAP surface layer. This study was characterized by the values of K (m/s) and HC (s-1), from which it was not possible to obtain a relation. From this study it was concluded that the measuring methods of the hydraulic conductivity in the laboratory were close to the behaviour of the same in situ, however its evaluation under real conditions is always essential.
Characterization of the Skid Resistance and Mean Texture Depth in a Permeable Asphalt Pavement
Publication . Afonso, Márcia Isabel Lopes; Almeida, Marisa S. Dinis; Fael, Cristina Maria Sena
Road pavements need a deep characterization of the surface layer, with which the vehicles have direct contact and, therefore, must provide security to the users. The use of permeable asphalt pavements (PAP) with porous layers has provide obvious advantages in reducing runoff and the rainwater infiltration into the soil or for storage. However, the study of the interaction between the pavement surface layer and the tire rubber requires additional tests in terms of texture and friction, since they are important parameters for the design, construction, management, maintenance and roads safety. Considering the application of a PAP in a parking lot, the study objective was to characterize in the field the pavement surface in terms of mean texture depth (MTD) and skid resistance (Pendulum test value, PTV). The methods used were the volumetric technique by the patch test and the pendulum test, according to EN 13036-1 and EN 13036-4, respectively. The double layer porous asphalt (DLPA) at the surface is characterized by having a structure with high voids content that led to results of clearly rougher macrotexture and good skid resistance. The normalized limit values were met, however, a very strong correlation between MTD and PTV was not observed. A comparison was also made with porous surfaces of other studies and it was found that porous asphalt has a good behaviour at the start of construction which may tend to improve in the long term. From the study, it is concluded that the PAP presents good performance of the surface layer, providing road safety to users.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BD/131034/2017