Repository logo
 
Loading...
Project Logo
Research Project

ESTUDOS ESTRUTURAIS, MECANÍSTICOS E FUNCIONAIS DE CANAIS DE CÁLCIO MEMBRANARES

Authors

Publications

Isolation and culture of human umbilical artery smooth muscle cells expressing functional calcium channels
Publication . Cairrão, Elisa; Santos-Silva, António; Alvarez, Ezequiel; Correia, Ilídio Joaquim Sobreira; Verde, Ignacio
The human umbilical cord is a biological sample that can be easily obtained just after birth. A methodology was developed to perform cultures of human umbilical artery smooth muscle cells (HUASMC) expressing contractile proteins and functional ionic channels. To avoid fibroblast and endothelial cell contamination, we mechanically separated the tunica media, which only contains HUASMC and matrix proteins. To isolate the cells, collagenase V and elastase were used as hydrolyzing enzymes. The isolated cells were plated in collagen-coated dishes to obtain cultures of HUASMC. The cells obtained after different passages (1 to 6) exhibit the characteristic vascular smooth cell morphology and express smooth muscle alpha-2 actin, myosin heavy chain SM1, and alpha subunits of L- and T-type calcium channels (Cav 1.2, Cav 1.2, and Cav 3.2). Electrophysiology recordings for L- and T-type calcium channels were made, indicating that these channels are functional in the cultured cells. In conclusion, the procedure developed allows obtaining cultures of HUASMC expressing contractile proteins and also functional ionic channels. These cells could be used to study cellular and molecular aspects about the regulation of the vascular function.
Development of a new chitosan hydrogel for wound dressing
Publication . Ribeiro, MP.; Espiga, Ana; Silva, Daniela; Baptista, Patrícia; Henriques, Joaquim; Ferreira, Catarina L.; Silva, Jorge; Borges, João; Pires, Eduardo; Chaves, Paula; Correia, Ilídio Joaquim Sobreira
Wound healing is a complex process involving an integrated response by many different cell types and growth factors in order to achieve rapid restoration of skin architecture and function. The present study evaluated the applicability of a chitosan hydrogel (CH) as a wound dressing. Scanning electron microscopy analysis was used to characterize CH morphology. Fibroblast cells isolated from rat skin were used to assess the cytotoxicity of the hydrogel. CH was able to promote cell adhesion and proliferation. Cell viability studies showed that the hydrogel and its degradation by-products are noncytotoxic. The evaluation of the applicability of CH in the treatment of dermal burns in Wistar rats was performed by induction of full-thickness transcutaneous dermal wounds. Wound healing was monitored through macroscopic and histological analysis. From macroscopic analysis, the wound beds of the animals treated with CH were considerably smaller than those of the controls. Histological analysis revealed lack of a reactive or a granulomatous inflammatory reaction in skin lesions with CH and the absence of pathological abnormalities in the organs obtained by necropsy, which supported the local and systemic histocompatibility of the biomaterial. The present results suggest that this biomaterial may aid the re-establishment of skin architecture.
A poly(ε-caprolactone) device for sustained release of an anti-glaucoma drug
Publication . Natu, Mădălina; Gaspar, Manuel; Ribeiro, Carlos; Correia, Ilídio Joaquim Sobreira; Silva, Daniela; Sousa, Hermínio C. de; Gil, Maria
Implantable dorzolamide-loaded discs were prepared by blending poly(ε-caprolactone), PCL, with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), Lu. By blending, crystallinity, water uptake and mass loss were modified relative to the pure polymers. Burst was diminished by coating the discs with a PCL shell. All samples presented burst release except PCL-coated samples that showed controlled release during 18 days. For PCL-coated samples, barrier control of diffusion coupled with partition control from the core slowed down the release, while for 50/50 Lu/PCL-coated samples, the enhancement in the porosity of the core diminished partition control of drug release. Nonlinear regression analysis suggested that a degradation model fully describes the release curve considering a triphasic release mechanism: the instantaneous diffusion (burst), diffusion and polymer degradation stages. The MTT test indicated that the materials are not cytotoxic for corneal endothelial cells. A good in vitro–in vivo correlation was obtained, with similar amounts of drug released in vitro and in vivo. The discs decreased intraocular pressure (IOP) in normotensive rabbit eyes by 13.0% during 10 days for PCL-coated and by 13.0% during 4 days for 50/50 Lu/PCL-coated samples. The percentages of IOP decrease are similar to those obtained by dorzolamide eyedrop instillation (11.0%).
Ocular injectable formulation assessment for oxidized dextran-based hydrogels
Publication . Maia, João; Ribeiro, MP.; Ventura, Carla; Carvalho, Rui; Correia, Ilídio Joaquim Sobreira; Gil, Maria
Initiator-free injectable hydrogels are very interesting for drug and/or cell delivery applications, since they can be administered in a minimally invasive way, and avoid the use of potentially harmful chemical initiators. In the current work, oxidized dextran crosslinked with adipic acid dihydrazide hydrogels were further characterized and tuned to produce formulations, with the aim of producing an injectable formulation for the possible treatment of posterior eye diseases. The gelation rate and the hydrogel dissolution profile were shown to be dependent on the balance between the degree of dextran oxidation, and the concentration of both components. For the in vitro studies, rabbit corneal endothelial cells were seeded on the hydrogels to assess cytotoxicity. Hydrogels prepared with low oxidized dextrans were able to promote cell adhesion and proliferation to confluence in just 24 h, while more highly oxidized samples promoted cell adhesion and proliferation, but without achieving confluence. Cell viability studies were performed using MTS assays to verify the non-cytotoxicity of hydrogels and their degradation byproducts, rendering these formulations attractive for further in vivo studies.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

SFRH/BPD/19776/2004

ID