Loading...
Research Project
Untitled
Funder
Authors
Publications
MPEG DASH - some QoE-based insights into the tradeoff between audio and video for live music concert streaming under congested network conditions
Publication . Rodrigues, Rafael; Pocta, Peter; Melvin, Hugh; Pereira, Manuela; Pinheiro, Antonio M. G.
The rapid adoption of MPEG-DASH is testament to its core design principles that enable the client to make the informed decision relating to media encoding representations, based on network conditions, device type and preferences. Typically, the focus has mostly been on the different video quality representations rather than audio. However, for device types with small screens, the relative bandwidth budget difference allocated to the two streams may not be that large. This is especially the case if high quality audio is used, and in this scenario, we argue that increased focus should be given to the bit rate representations for audio. Arising from this, we have designed and implemented a subjective experiment to evaluate and analyses the possible effect of using different audio quality levels. In particular, we investigate the possibility of providing reduced audio quality so as to free up bandwidth for video under certain conditions. Thus, the experiment was implemented for live music concert scenarios transmitted over mobile networks, and we suggest that the results will be of significant interest to DASH content creators when considering bandwidth tradeoff between audio and video.
Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks
Publication . Dias, João Alfredo Fazendeiro Fernandes; Rodrigues, Joel José Puga Coelho
A wide range of daily-life applications supported by vehicular networks attracted the interest,
not only from the research community, but also from governments and the automotive
industry. For example, they can be used to enable services that assist drivers on the roads (e.g.,
road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity),
or to enable communications on remote or rural regions where it is not possible to have
a common network infrastructure. Nonetheless, the unique properties of vehicular networks
raise several challenges that greatly impact the deployment of these networks.
Most of the challenges faced by vehicular networks arise from the highly dynamic network
topology, which leads to short and sporadic contact opportunities, disruption, variable
node density, and intermittent connectivity. This situation makes data dissemination an interesting
research topic within the vehicular networking area, which is addressed by this study.
The work described along this thesis is motivated by the need to propose new solutions to deal
with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant
networks (VDTNs).
To guarantee the success of data dissemination in vehicular networks scenarios it is important
to ensure that network nodes cooperate with each other. However, it is not possible
to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the
presence of selfish and misbehavior nodes, which may result in a significant decrease of the
overall network performance. Thus, cooperative nodes may suffer from the overwhelming load
of services from other nodes, which comprises their performance.
Trying to solve some of these problems, this thesis presents several proposals and studies
on the impact of cooperation, monitoring, and management strategies on the network performance
of the VDTN architecture. The main goal of these proposals is to enhance the network
performance. In particular, cooperation and management approaches are exploited to improve
and optimize the use of network resources. It is demonstrated the performance gains attainable
in a VDTN through both types of approaches, not only in terms of bundle delivery probability,
but also in terms of wasted resources.
The results and achievements observed on this research work are intended to contribute
to the advance of the state-of-the-art on methods and strategies for overcome the challenges
that arise from the unique characteristics and conceptual design of vehicular networks.
A User Trust System for Online Games: Part I
Publication . Cardoso, Rui Costa; Freire, Mario; Gomes, Abel
In virtual worlds (including computer games), users develop trust relationships from their in-world interactions with others. However, these trust relationships end up not being represented in the data structures (or databases) of such virtual worlds, though they sometimes appear associated with reputation and recommendation systems. In addition, as far as we know, the user is not provided with a personal trust tool to sustain his/her decision-making while he/she interacts with other users in the virtual or game world. In order to come up with a computational formal representation of these personal trust relationships, we need to succeed in converting in-world interactions into reliable sources of trust-related data. In this paper, we develop the required formalisms to gather and represent in-world interactions-which are based on the activity theory-as well as a method to convert in-world interactions into trust networks. In the companion paper, we use these trust networks to produce a computational trust decision based on subjective logic. This solution aims at supporting in-world user (or avatar) decisions about others in the game world.
Impact of considering the ITU-R two slope propagation model in the system capacity trade-off for LTE-A HetNets with small cells
Publication . Sousa, Sofia; Velez, Fernando; Peha, Jon
This work aims at understanding and evaluating the impact of using different path loss models in the optimization trade-off of small cell (SC) networks. In LTE-A, the more realistic propagation models are the more efficient the radio and network optimization becomes. In this work we compare four urban path loss models: the urban/vehicular and pedestrian test environment from the ITU-R M. 1255 Report as well as the two slope Micro Urban Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) from the ITU-R 2135 Report. The two-slope model considers the existence of a breakpoint in the behaviour of the path loss and yields a significantly lower throughput per square km than a traditional one-slope model if and only if cell radius is small (coverage distances, R, up to breakpoint distance divided by the reuse pattern).
Multi-GPU-Based Detection of Protein Cavities using Critical Points
Publication . Dias, Sérgio; Nguyen, Quoc; Jorge, Joaquim A; Gomes, Abel
Protein cavities are specific regions on the protein surface where ligands (small molecules) may bind. Such cavities are putative binding sites of proteins for ligands. Usually, cavities correspond to voids, pockets, and depressions of molecular surfaces. The location of such cavities is important to better understand protein functions, as needed in, for example, structure-based drug design. This article introduces a geometric method to detecting cavities on the molecular surface based on the theory of critical points. The method, called CriticalFinder, differs from other surface-based methods found in the literature because it directly uses the curvature of the scalar field (or function) that represents the molecular surface, instead of evaluating the curvature of the Connolly function over the molecular surface. To evaluate the accuracy of CriticalFinder, we compare it to other seven geometric methods (i.e., LIGSITE-CS, GHECOM, ConCavity, POCASA, SURFNET, PASS, and Fpocket). The benchmark results show that CriticalFinder outperforms those methods in terms of accuracy. In addition, the performance analysis of the GPU implementation of CriticalFinder in terms of time consumption and memory space occupancy was carried out.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
5876
Funding Award Number
UID/EEA/50008/2013