Loading...
Research Project
Centro de Estudos de Recursos Naturais, Ambiente e Sociedade (CERNAS/ESAC/IPC)
Funder
Authors
Publications
Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries
Publication . Alves, Patrícia; Luzio, Diana; Sá, Kevin; Correia, I.J.; Ferreira, Paula
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials.
Renewable Photo-Cross-Linkable Polyester-Based Biomaterials: Synthesis, Characterization, and Cytocompatibility Assessment
Publication . Cernadas, Maria Teresa; Pereira, João; Melo, Bruna Daniela Lopes ; de Melo-Diogo, Duarte; Correia, Ilídio Joaquim Sobreira ; Alves, Patrícia; Calvinho, Paula Cristina Nunes Ferreira
TThe present work consist of the synthesis of photo-crosslinkable materials, based on unsaturated polyesters (UPs), synthesized from biobased monomers from renewable sources such as itaconic acid and 1,4- butanediol. The UPs were characterized to assess the influence of polycondensation reaction temperature and cross-linking time on their final properties. For this purpose, different UV irradiation exposure periods were tested. Homogeneous, uniform, and transparent films were obtained after 1, 3, and 5 min of UV exposure. These cross-linked films were then characterized. All materials presented high gel content, which was dependent on the reaction’s temperature. The thermal behaviors of the UPs were shown to be similar. In vitro hydrolytic degradation tests showed that the materials can undergo degradation in phosphate-buffered saline (PBS) at pH 7.4 and 37 °C, ensuring their biodegradability over time. Finally, to assess the applicability of the polyesters as biomaterials, their cytocompatibility was determined by using human dermal fibroblasts.
UV-crosslinked biomaterials: Functionalized polyethylene glycol for tissue adhesive applications
Publication . Cernadas, Maria Teresa; Ferreira, Mariana; Melo, Bruna Daniela Lopes ; de Melo-Diogo, Duarte; Correia, Ilídio Joaquim Sobreira ; Calvinho, Paula Cristina Nunes Ferreira ; Alves, Patrícia
Surgeons around the world face the challenge of effectively and securely treat acute wounds. The most used techniques used to reestablish proper tissue continuity and promote healing comprise surgical tape strips and wound suturing or stapling. However, these have different limitations associated, like additional tissue trauma and patient discomfort. Tissue adhesives have emerged as a promising alternative to traditional wound dressings and have been widely explored for their potential to minimize these drawbacks while improving overall outcomes.
This study focused on the preparation of photocrosslinkable biomaterials, synthesized from polyethylene glycol (PEG) functionalized with 2-isocyanatoethyl acrylate (AOI), for potential use as tissue adhesives. The synthesized polymers were then crosslinked using two different UV irradiation times (30 and 120 s) to assess how the crosslinking period impacts the final properties of the films. The materials’ chemical composition and thermal and mechanical behavior were further characterized. Rheologic profile, gel content, hydrolytic degradation, and contact angles were assessed. In addition, cytocompatibility evaluation was also conducted. Overall, the obtained data suggest that the newly synthesized tissue adhesives form flexible, homogeneous, and transparent matrices, exhibiting promising properties for potential tissue adhesive applications.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
CEEC INST 2ed
Funding Award Number
CEECINST/00077/2021/CP2798/CT0001