Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Enhancing the efficiency of electricity utilization through home energy management systems within the smart grid framework
Publication . Mendes, Tiago Daniel Penedo; Catalão, João Paulo da Silva; Matias, João Carlos de Oliveira
The concept behind smart grids is the aggregation of “intelligence” into the grid, whether through communication systems technologies that allow broadcast/data reception in real-time, or through monitoring and systems control in an autonomous way. With respect to the technological advancements, in recent years there has been a significant increment in devices and new strategies for the implementation of smart buildings/homes, due to the growing awareness of society in relation to environmental concerns and higher energy costs, so that energy efficiency improvements can provide real gains within modern society. In this perspective, the end-users are seen as active players with the ability to manage their energy resources, for example, microproduction units, domestic loads, electric vehicles and their participation in demand response events. This thesis is focused on identifying application areas where such technologies could bring benefits for their applicability, such as the case of wireless networks, considering the positive and negative points of each protocol available in the market. Moreover, this thesis provides an evaluation of dynamic prices of electricity and peak power, using as an example a system with electric vehicles and energy storage, supported by mixed-integer linear programming, within residential energy management. This thesis will also develop a power measuring prototype designed to process and determine the main electrical measurements and quantify the electrical load connected to a low voltage alternating current system. Finally, two cases studies are proposed regarding the application of model predictive control and thermal regulation for domestic applications with cooling requirements, allowing to minimize energy consumption, considering the restrictions of demand, load and acclimatization in the system.
Smart operation of transformers for sustainable electric vehicles integration and model predictive control for energy monitoring and management
Publication . Godina, Radu; Catalão, João Paulo da Silva; Matias, João Carlos de Oliveira
The energy transmission and distribution systems existing today are stillsignificantly dependent on transformers,despite beingmore efficient and sustainable than those of decadesago. However, a large numberof power transformers alongwith other infrastructures have been in service for decades and are considered to be in their final ageing stage. Anymalfunction in the transformerscouldaffect the reliability of the entire electric network and alsohave greateconomic impact on the system.Concernsregardingurban air pollution, climate change, and the dependence on unstable and expensive supplies of fossil fuels have lead policy makers and researchers to explore alternatives to conventional fossil-fuelled internal combustion engine vehicles. One such alternative is the introduction of electric vehicles. A broad implementation of such mean of transportation could signify a drastic reduction in greenhouse gases emissions and could consequently form a compelling argument for the global efforts of meeting the emission reduction targets. In this thesis the topic of a high penetration of electric vehicles and their possible integration in insular networksis discussed. Subsequently, smart grid solutions with enabling technologies such as energy management systems and smart meters promote the vision of smart households, which also allows for active demand side in the residential sector.However, shifting loads simultaneously to lower price periods is likely to put extra stress on distribution system assets such as distribution transformers. Especially, additional new types of loads/appliances such as electric vehicles can introduce even more uncertaintyon the operation of these assets, which is an issue that needs special attention. Additionally, in order to improve the energy consumption efficiencyin a household, home energy management systems are alsoaddressed. A considerable number ofmethodologies developed are tested in severalcasestudies in order to answer the risen questions.
Energy storage systems and grid code requirements for large-scale renewables integration in insular grids
Publication . Rodrigues, Eduardo Manuel Godinho; Catalão, João Paulo da Silva; Matias, João Carlos de Oliveira
This thesis addresses the topic of energy storage systems supporting increased penetration of renewables in insular systems. An overview of energy storage management, forecasting tools and demand side solutions is carried out, comparing the strategic utilization of storage and other competing strategies. Particular emphasis is given to energy storage systems on islands, as a new contribution to earlier studies, addressing their particular requirements, the most appropriate technologies and existing operating projects throughout the world. Several real-world case studies are presented and discussed in detail. Lead-acid battery design parameters are assessed for energy storage applications on insular grids, comparing different battery models. The wind curtailment mitigation effect by means of energy storage resources is also explored. Grid code requirements for large-scale integration of renewables are discussed in an island context, as another new contribution to earlier studies. The current trends on grid code formulation, towards an improved integration of distributed renewable resources in island systems, are addressed. Finally, modeling and control strategies with energy storage systems are addressed. An innovative energy management technique to be used in the day-ahead scheduling of insular systems with Vanadium Redox Flow battery is presented.
Forecasting tools and probabilistic scheduling approach incorporatins renewables uncertainty for the insular power systems industry
Publication . Silva, Gerardo José Osório da; Catalão, João Paulo da Silva; Matias, João Carlos de Oliveira
Nowadays, the paradigm shift in the electricity sector and the advent of the smart grid, along with the growing impositions of a gradual reduction of greenhouse gas emissions, pose numerous challenges related with the sustainable management of power systems. The insular power systems industry is heavily dependent on imported energy, namely fossil fuels, and also on seasonal tourism behavior, which strongly influences the local economy. In comparison with the mainland power system, the behavior of insular power systems is highly influenced by the stochastic nature of the renewable energy sources available. The insular electricity grid is particularly sensitive to power quality parameters, mainly to frequency and voltage deviations, and a greater integration of endogenous renewables potential in the power system may affect the overall reliability and security of energy supply, so singular care should be placed in all forecasting and system operation procedures. The goals of this thesis are focused on the development of new decision support tools, for the reliable forecasting of market prices and wind power, for the optimal economic dispatch and unit commitment considering renewable generation, and for the smart control of energy storage systems. The new methodologies developed are tested in real case studies, demonstrating their computational proficiency comparatively to the current state-of-the-art.
Reserve services provision by demand side resources in systems with high renewables penetration using stochastic optimization
Publication . Paterakis, Nikolaos; Catalão, João Paulo da Silva
It is widely recognized that renewable energy sources are likely to represent a significant portion of the production mix in many power systems around the world, a trend expected to be increasingly followed in the coming years due to environmental and economic reasons. Among the different endogenous renewable sources that may be used in order to achieve reductions in the carbon footprint related to the electricity sector and increase the economic efficiency of the generation mix, wind power generation has been one of the most popular options. However, despite the potential benefits that arise from the integration of these resources in the power system, their large-scale integration leads to additional problems due to the fact that their production is highly volatile. As a result, apart from the typical sources of uncertainty that the System Operators have to face, such as system contingencies and intra-hour load deviations, through the deployment of sufficient levels of reserve generation, additional reserves must be kept in order to maintain the balance between the generation and the consumption. Furthermore, a series of other problems arise, such as efficiency loss because of ramping of conventional units, environmental costs because of increased emissions due to suboptimal unit commitment and dispatch and more costly system operation and maintenance. Recently, it has been recognized that apart from the generation side, several types of loads may be deployed in order to provide system services and especially, different types of reserves, through demand response. The contribution of demand side reserves to accommodate higher levels of wind power generation penetration is likely to be of substantial importance in the future and therefore, the integration of these resources in the system operations needs to be thoroughly studied. This thesis deals with the aspects of demand response as regards the integration of wind power generation in the power system. First, a mapping of the current status of demand response internationally is attempted, followed also by a discussion concerning the opportunities, the benefits and the barriers to the widespread adoption of demand side resources. Then, several joint energy and reserve market structures are developed which explicitly incorporate demand side resources that may contribute to energy and reserve services. Two-stage stochastic programming is employed in order to capture the uncertainty of wind power generation. Moreover, several aspects of demand response are considered such as the capability of providing contingency and load following reserves, the appropriate modeling of industrial consumer processes load and the load recovery effect. Finally, this thesis investigates the effect of demand side resources on the risk that is associated with the decisions of the System Operator through appropriate risk management techniques, proposing also a novel methodology of handling risk as an alternative to the commonly used technique.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

5876-PPCDTI

Funding Award Number

PTDC/EEA-EEL/118519/2010

ID