Repository logo
 
Loading...
Project Logo
Research Project

2013 - Strategic Project

Authors

Publications

Design of oligoaziridine-PEG coatings for efficient nanogold cellular biotagging
Publication . Silva, A. Sofia; Bonifácio, Vasco; Raje, Vivek; Branco, Paula S.; Machado, Paulo Filipe Brito; Correia, Ilídio Joaquim Sobreira; Ricardo, Ana Aguiar
Gold nanoparticles (AuNPs) are the most investigated nanomaterials for theragnosis applications. In a research field where live cell assays, as well as the tracking of nanomaterials into a cell's environment, are of extremely importance, water-soluble AuNPs have been intensively studied to overcome the toxic effects exerted by coatings. Unfortunately, AuNPs fluorescent tagging often fails due to self-quenching and a careful design must be carried out to maintain optoelectronic properties and biocompatibility. In this work, the synthesis of fluorescent gold nanoprobes, able to enter the cell's environment (biotags) and target the cell nucleus, was designed and the particles tracked by confocal laser scanning microscopy. The coating of AuNPs with maleimide poly(ethylene glycol) and fluorescent oligoaziridine biocompatible oligomers, resulted in robust, optically active biotags that open novel insights into cancer theragnosis.
Polyurea dendrimer for efficient cytosolic siRNA delivery
Publication . Restani, Rita; Conde, João; Baptista, Pedro; Cidade, Maria Teresa Varanda; Bragança, Ana; Morgado, Jorge; Correia, Ilídio Joaquim Sobreira; Ricardo, Ana Aguiar; Bonifácio, Vasco
The design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are ‘smart’ biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, they are able to automatically and reversibly transform their conformation in response to pH stimulus. Here, we show that PURE-G4 is a useful gene silencing platform showing no cellular toxicity. As a proof of concept we investigated the PURE-G4-siRNA dendriplex, which was shown to be an attractive platform with high transfection efficacy. The simplicity associated with the complexation of siRNA with polyurea dendrimers makes them a powerful tool for efficient cytosolic siRNA delivery.
Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing
Publication . Morgado, Patrícia I.; Lisboa, Pedro; Ribeiro, MP.; Miguel, Sónia P.; Simões, Pedro; Correia, Ilídio Joaquim Sobreira; Ricardo, Ana Aguiar
Asymmetrical membranes have been reported as ideal wound dressings for skin regeneration. The usual methods (dry/wet-phase inversion) to produce those specific membranes are time consuming, and in majority of the cases demand the use of harmful organic solvents. In this study, supercritical carbon dioxide (scCO2)-assisted phase inversion method was applied to prepare poly(vinyl alcohol)/chitosan (PVA/CS) asymmetrical membranes. This technique can tailor the final structure of the dressing by tuning the processing conditions allowing the development of high porous materials with optimized morphology, mechanical properties and hydrophilicity. The PVA/CS dressings produced are recovered in a dry state but can form a hydrogel due to their high water uptake ability maintaining the moisturized environment needed for wound healing. The dressing presents a top thin layer of about 15 µm that allows gaseous exchange while barricading the penetration of microorganisms, and a sponge bottom layer that is able to remove excess exudates. A mathematical model based on Fick׳s second law of diffusion was developed to describe the pharmacokinetic release profile of a small drug (ibuprofen) from the swollen membrane in physiological conditions that mimic the wound. In vitro studies revealed that the dressings had excellent biocompatibility and biodegradation properties adequate for skin wound healing.
Natural melanin: A potential pH-responsive drug release device
Publication . Araújo, Marco; Viveiros, Raquel; Correia, Tiago R.; Correia, Ilídio Joaquim Sobreira; Bonifácio, Vasco; Casimiro, Teresa; Ricardo, Ana Aguiar
This work proposes melanin as a new nanocarrier for pH-responsive drug release. Melanin is an abundant natural polymer that can be easily extracted from cuttlefish as nanoparticles with a suitable size range for drug delivery. However, despite its high potentiality, the application of this biopolymer in the pharmaceutical and biomedical fields is yet to be explored. Herein, melanin nanoparticles were impregnated with metronidazole, chosen as model antibiotic drug, using supercritical carbon dioxide. The drug release profile was investigated at acidic and physiologic pH, and the dominant mechanism was found to follow a non-Fickian transport. Drug release from melanin shows a strong pH dependency, which allied to its biocompatibility and lack of cytotoxicity envisages its potential application as nanocarrier in formulations for colon and intestine targeted drug delivery.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6820 - DCRRNI ID

Funding Award Number

PEst-C/EQB/LA0006/2013

ID