Repository logo
 
Publication

A bat optimized neural network and wavelet transform approach for short-term price forecasting

dc.contributor.authorBento, P.M.R.
dc.contributor.authorPombo, José Álvaro Nunes
dc.contributor.authorCalado, M. do Rosário
dc.contributor.authorMariano, S.
dc.date.accessioned2019-05-02T13:14:55Z
dc.date.available2019-05-02T13:14:55Z
dc.date.issued2018-01
dc.description.abstractIn the competitive power industry environment, electricity price forecasting is a fundamental task when market participants decide upon bidding strategies. This has led researchers in the last years to intensely search for accurate forecasting methods, contributing to better risk assessment, with significant financial repercussions. This paper presents a hybrid method that combines similar and recent day-based selection, correlation and wavelet analysis in a pre-processing stage. Afterwards a feedforward neural network is used alongside Bat and Scaled Conjugate Gradient Algorithms to improve the traditional neural network learning capability. Another feature is the method's capacity to fine-tune neural network architecture and wavelet decomposition, for which there is no optimal paradigm. Numerical testing was applied in a day-ahead framework to historical data pertaining to Spanish and Pennsylvania-New Jersey-Maryland (PJM) electricity markets, revealing positive forecasting results in comparison with other state-of-the-art methods.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.apenergy.2017.10.058pt_PT
dc.identifier.issn03062619
dc.identifier.urihttp://hdl.handle.net/10400.6/7057
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectBat algorithmpt_PT
dc.subjectScaled conjugate gradientpt_PT
dc.subjectShort-term price forecastingpt_PT
dc.subjectSimilar day selectionpt_PT
dc.subjectWavelet transformpt_PT
dc.titleA bat optimized neural network and wavelet transform approach for short-term price forecastingpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage97pt_PT
oaire.citation.startPage88pt_PT
oaire.citation.titleApplied Energypt_PT
oaire.citation.volume210pt_PT
person.familyNameRocha Bento
person.familyNamePombo
person.familyNameCalado
person.familyNamePinto Simões Mariano
person.givenNamePedro Miguel
person.givenNameJose
person.givenNameM. do Rosário
person.givenNameSílvio José
person.identifier.ciencia-id7615-8E00-8084
person.identifier.ciencia-id9115-032B-370B
person.identifier.ciencia-id541F-E2B4-D66D
person.identifier.orcid0000-0002-9102-7086
person.identifier.orcid0000-0002-8727-0067
person.identifier.orcid0000-0002-5206-487X
person.identifier.orcid0000-0002-6102-5872
person.identifier.ridN-6809-2013
person.identifier.ridN-6834-2013
person.identifier.scopus-author-id57196424786
person.identifier.scopus-author-id34977533800
person.identifier.scopus-author-id9338016700
person.identifier.scopus-author-id35612517200
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4a9912dc-95bc-4e6e-b012-a89eb6e2dfcb
relation.isAuthorOfPublicationcce2060a-24b8-441b-8896-cb4d0b3d3e83
relation.isAuthorOfPublication321aefdd-cd1f-4dd6-878e-c904b3ef89ab
relation.isAuthorOfPublicationcdbb9afc-4123-45ca-a946-89bafda7ab68
relation.isAuthorOfPublication.latestForDiscovery4a9912dc-95bc-4e6e-b012-a89eb6e2dfcb

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
6.2.35_AppliedEnergy_2018.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: