Repository logo
 
Publication

Leveraging Machine Learning for Weed Management and Crop Enhancement: Vineyard Flora Classification

dc.contributor.authorCorceiro, Ana
dc.contributor.authorPereira, Nuno José Matos
dc.contributor.authorAlibabaei, Khadijeh
dc.contributor.authorGaspar, Pedro Dinis
dc.date.accessioned2024-01-22T16:10:20Z
dc.date.available2024-01-22T16:10:20Z
dc.date.issued2024
dc.description.abstractThe global population’s rapid growth necessitates a 70% increase in agricultural production, posing challenges exacerbated by weed infestation and herbicide drawbacks. To address this, machine learning (ML) models, particularly convolutional neural networks (CNNs), are employed in precision agriculture (PA) for weed detection. This study focuses on testing CNN architectures for image classification tasks using the PyTorch framework, emphasizing hyperparameter optimization. Four groups of experiments were carried out: the first one trained all the PyTorch architectures, followed by the creation of a baseline, the evaluation of a new and extended dataset in the best models, and finally, the test phase was conducted using a web application developed for this purpose. Of 80 CNN sub-architectures tested, the MaxVit, ShuffleNet, and EfficientNet models stand out, achieving a maximum accuracy of 96.0%, 99.3%, and 99.3%, respectively, for the first test phase of PyTorch classification architectures. In addition, EfficientNet_B1 and EfficientNet_B5 stood out compared to all other models. During experiment 3, with a new dataset, both models achieved a high accuracy of 95.13% and 94.83%, respectively. Furthermore, in experiment 4, both EfficientNet_B1 and EfficientNet_B5 achieved a maximum accuracy of 96.15%, the highest one. ML models can help to automate crop problem detection, promote organic farming, optimize resource use, aid precision farming, reduce waste, boost efficiency, and contribute to a greener, sustainable agricultural future.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/a17010019pt_PT
dc.identifier.issn1999-4893
dc.identifier.urihttp://hdl.handle.net/10400.6/14100
dc.language.isoengpt_PT
dc.publisherAlgorithmspt_PT
dc.relation.publisherversionAlgorithmspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAgriculturept_PT
dc.subjectCNNpt_PT
dc.subjectML algorithmspt_PT
dc.subjectFlora classificationpt_PT
dc.subjectPrecision agriculturept_PT
dc.titleLeveraging Machine Learning for Weed Management and Crop Enhancement: Vineyard Flora Classificationpt_PT
dc.typejournal article
dspace.entity.typePublication
person.familyNameCorceiro
person.familyNameAlibabaei
person.familyNameGaspar
person.givenNameAna
person.givenNameKhadijeh
person.givenNamePedro Dinis
person.identifier2073838
person.identifier.ciencia-id3816-4976-98BF
person.identifier.ciencia-id6111-9F05-2916
person.identifier.orcid0000-0002-0502-7953
person.identifier.orcid0000-0002-2319-8211
person.identifier.orcid0000-0003-1691-1709
person.identifier.ridN-3016-2013
person.identifier.scopus-author-id57419570900
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication9863752d-5e00-470a-afc3-f51f8a459fe8
relation.isAuthorOfPublication42cdea19-a0b8-4e67-89cd-405635dede48
relation.isAuthorOfPublicationb69e2ba0-43af-4cf7-873e-090fd9fc6c94
relation.isAuthorOfPublication.latestForDiscovery42cdea19-a0b8-4e67-89cd-405635dede48

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
algorithms-17-00019.pdf
Size:
3.83 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: