Name: | Description: | Size: | Format: | |
---|---|---|---|---|
25.97 MB | Adobe PDF |
Advisor(s)
Abstract(s)
In the present thesis, a single expansion ramp nozzle (SERN) is designed and investigated.
A Python algorithm based on the method of characteristics (MOC) is developed, which generates the optimised contour of a 2D supersonic calorically perfect minimum length nozzle (MLN), for ideal shockfree flow expansion, and calculates various flowfield properties
within the nozzle. The algorithm results shows good agreement with theoretical background,
previous literature and CFD simulations, thus validating the code. An optimised SERN geometry is then designed using the algorithm, operating with an exit Mach number of ME = 4
and a specific heat ratio of ? = 1.4. The optimal geometry is truncated at 40% of its length for
viable integration into a vehicle, without significant loss in thrust. A numerical framework
is created in ANSYS FLUENT 16.2, and validated by comparison with data from previous
experimental investigations conducted on SERN’s. The validated model is then applied to
the SERN designed in this study, where various simulations of design and offdesign conditions are conducted. The numerical simulations are solved in a steadystate 2D environment, using the densitybased solver and the k - e RNG turbulence model. Case A simulates
SERN operation at design altitude (22 km) and speed (Mach 4), through nozzle pressure
ratios (NPR’s) 133.65 (design), 100, 75, 50 and 25. Near perfect expansion of the gases is
achieved at the design NPR. As the NPR is reduced, the flow becomes overexpanded, with
the formation of incident shockwaves at the nozzle exit and reflected shockwaves further
downstream, reduction of exhaust flow speed and contraction of the exhaust plume. From
NPR = 133.65 to NPR = 25, the SERN’s thrust, lift and moments suffer a linear reduction
of 81.33%, 80.7% and 81.17%, respectively. Case B simulates SERN operation at offdesign
speed (Mach 0.4) and altitude (8 km), through NPR’s 4, 5, 6, 8, 10, 12, 15 and 20. Severe
overexpanded flow and complex shockwave patterns are observed, such as the restricted
shock separation (RSS) pattern, including separation and reattachment of the main jet to the
ramp, formation of a separation bubble on the ramp, a large recirculation region on the flap,
Mach disks, ? shock structures and shocktrains. From NPR = 4 to NPR = 20, the SERN’s
thrust, lift and moments varied to some degree, with an overall increase of 38.2%, 5.27% and
42.3% respectively.
Na presente tese, um bocal de rampa de expansão única (SERN) é projetado e investigado. Um algoritmo de Python baseado no método das características é desenvolvido, o qual calcula o contorno otimizado de um bocal 2D supersónico caloricamente perfeito de comprimento mínimo, para expansão ideal dos gases, sem choques. Além disso, calcula também várias propriedades do escoamento no interior do bocal. Os resultados do algoritmo são coroborados pelos fundamentos teóricos, literatura prévia e simulações CFD, validando assim o código. A geometria otimizada de um SERN (com um Mach à saída de ME = 4 e um coeficiente de expansão adiabática de ? = 1, 4) é então obtida com recurso ao algoritmo, e truncada a 40% do seu comprimento sem perda significativa de tração, para integração viável num veículo. Um modelo numérico foi criado em ANSYS FLUENT 16.2, e validado com dados de uma prévia investigação experimental efetuada em SERN’s. O modelo validado foi então aplicado ao SERN projetado neste estudo, onde várias simulações foram efetuadas em diferentes condições de operação. As simulações numéricas são resolvidas em regime permanente, 2D, utilizando o solver baseado em densidade e o modelo de turbulência k-e RNG. O Caso A simula a operação do SERN à altitude (22 km) e velocidade (Mach 4) de projeto, variando a razão de pressão do bocal (NPR) de 133,65 (projeto), 100, 75, 50 e 25. Ao NPR de projeto, observase uma expansão quase perfeita dos gases. À medida que o NPR é reduzido, a escoamento tornase sobreexpandido, com a formação de ondas de choque incidentes à saída do bocal e ondas de choque refletidas a jusante, redução da velocidade do escoamento e contração da pluma do jato. Entre os NPR’s 133,65 a 25, a tração, sustentação e momentos do SERN sofrem uma redução linear de 81,33%, 80,7% e 81,17%, respetivamente. O Caso B simula a operação do SERN a uma velocidade (0.4 Mach) e altitude (8 km) fora do ponto de projeto, variando o NPR de 4, 5, 6, 8, 10, 12, 15 até 20. Observase extrema sobreexpansão do escoamento e padrões de ondas de choque complexos, tais como o padrão de separação de choque restrito (RSS), incluindo a formação de uma bolha de recirculação na rampa, entre os pontos de separação e religação do jato principal, uma grande região de recirculação no flap, discos de Mach, estruturas de choque ? e cadeias de choque. Entre os NPR’s 4 a 20, a tração, sustentação e momentos do SERN sofrem uma certa variação, com um aumento global de 38,2%, 5,27% e 42,3%, respetivamente.
Na presente tese, um bocal de rampa de expansão única (SERN) é projetado e investigado. Um algoritmo de Python baseado no método das características é desenvolvido, o qual calcula o contorno otimizado de um bocal 2D supersónico caloricamente perfeito de comprimento mínimo, para expansão ideal dos gases, sem choques. Além disso, calcula também várias propriedades do escoamento no interior do bocal. Os resultados do algoritmo são coroborados pelos fundamentos teóricos, literatura prévia e simulações CFD, validando assim o código. A geometria otimizada de um SERN (com um Mach à saída de ME = 4 e um coeficiente de expansão adiabática de ? = 1, 4) é então obtida com recurso ao algoritmo, e truncada a 40% do seu comprimento sem perda significativa de tração, para integração viável num veículo. Um modelo numérico foi criado em ANSYS FLUENT 16.2, e validado com dados de uma prévia investigação experimental efetuada em SERN’s. O modelo validado foi então aplicado ao SERN projetado neste estudo, onde várias simulações foram efetuadas em diferentes condições de operação. As simulações numéricas são resolvidas em regime permanente, 2D, utilizando o solver baseado em densidade e o modelo de turbulência k-e RNG. O Caso A simula a operação do SERN à altitude (22 km) e velocidade (Mach 4) de projeto, variando a razão de pressão do bocal (NPR) de 133,65 (projeto), 100, 75, 50 e 25. Ao NPR de projeto, observase uma expansão quase perfeita dos gases. À medida que o NPR é reduzido, a escoamento tornase sobreexpandido, com a formação de ondas de choque incidentes à saída do bocal e ondas de choque refletidas a jusante, redução da velocidade do escoamento e contração da pluma do jato. Entre os NPR’s 133,65 a 25, a tração, sustentação e momentos do SERN sofrem uma redução linear de 81,33%, 80,7% e 81,17%, respetivamente. O Caso B simula a operação do SERN a uma velocidade (0.4 Mach) e altitude (8 km) fora do ponto de projeto, variando o NPR de 4, 5, 6, 8, 10, 12, 15 até 20. Observase extrema sobreexpansão do escoamento e padrões de ondas de choque complexos, tais como o padrão de separação de choque restrito (RSS), incluindo a formação de uma bolha de recirculação na rampa, entre os pontos de separação e religação do jato principal, uma grande região de recirculação no flap, discos de Mach, estruturas de choque ? e cadeias de choque. Entre os NPR’s 4 a 20, a tração, sustentação e momentos do SERN sofrem uma certa variação, com um aumento global de 38,2%, 5,27% e 42,3%, respetivamente.
Description
Keywords
Bocal de Rampa de Expansão Única Algoritmo Ansys Fluent Bocal de Comprimento Mínimo Método das Características Onda de Choque Otimização do Design de Bocal Padrão de Separação de
Escoamento Python Separação SobreExpandido Simulação Numérica