| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 2.89 MB | Adobe PDF |
Advisor(s)
Abstract(s)
The very first artificial satellite, Sputnik, was launched in 1957 marking a new era. Concurrently,
satellite mission operations emerged. These start at launch and finish at the end of mission, when
the spacecraft is decommissioned. Running a satellite mission requires the monitoring and control
of telemetry data, to verify and maintain satellite health, reconfigure and command the spacecraft,
detect, identify and resolve anomalies and perform launch and early orbit operations.
The very first chatbot, ELIZA was created in 1966, and also marked a new era of Artificial Intelligence
Systems. Said systems answer users’ questions in the most diverse domains, interpreting
the human language input and responding in the same manner. Nowadays, these systems are
everywhere, and the list of possible applications seems endless.
The goal of the present master’s dissertation is to develop a prototype of a chatbot for mission
operations. For this purpose implementing a Natural Language Processing (NLP) model for satellite
missions allied to a dialogue flow model. The performance of the conversational assistant is
evaluated with its implementation on a mission operated by the European Space Agency (ESA),
implying the generation of the spacecraft’s Database Knowledge Graph (KG).
Throughout the years, many tools have been developed and added to the systems used to monitor
and control spacecrafts helping Flight Control Teams (FCT) either by maintaining a comprehensive
overview of the spacecraft’s status and health, speeding up failure investigation, or allowing to easily
correlate time series of telemetry data. However, despite all the advances made which facilitate the
daily tasks, the teams still need to navigate through thousands of parameters and events spanning
years of data, using purposely built user interfaces and relying on filters and time series plots.
The solution presented in this dissertation and proposed by VisionSpace Technologies focuses on
improving operational efficiency whilst dealing with the mission’s complex and extensive databases.
O primeiro satélite artificial, Sputnik, foi lançado em 1957 e marcou o início de uma nova era. Simultaneamente, surgiram as operações de missão de satélites. Estas iniciam com o lançamento e terminam com desmantelamento do veículo espacial, que marca o fim da missão. A operação de satélites exige o acompanhamento e controlo de dados de telemetria, com o intuito de verificar e manter a saúde do satélite, reconfigurar e comandar o veículo, detetar, identificar e resolver anomalias e realizar o lançamento e as operações iniciais do satélite. Em 1966, o primeiro Chatbot foi criado, ELIZA, e também marcou uma nova era, de sistemas dotados de Inteligência Artificial. Tais sistemas respondem a perguntas nos mais diversos domínios, para tal interpretando linguagem humana e repondendo de forma similar. Hoje em dia, é muito comum encontrar estes sistemas e a lista de aplicações possíveis parece infindável. O objetivo da presente dissertação de mestrado consiste em desenvolver o protótipo de um Chatbot para operação de satélites. Para este proposito, criando um modelo de Processamento de Linguagem Natural (NLP) aplicado a missoões de satélites aliado a um modelo de fluxo de diálogo. O desempenho do assistente conversacional será avaliado com a sua implementação numa missão operada pela Agência Espacial Europeia (ESA), o que implica a elaboração do grafico de conhecimentos associado à base de dados da missão. Ao longo dos anos, várias ferramentas foram desenvolvidas e adicionadas aos sistemas que acompanham e controlam veículos espaciais, que colaboram com as equipas de controlo de missão, mantendo uma visão abrangente sobre a condição do satélite, acelerando a investigação de falhas, ou permitindo correlacionar séries temporais de dados de telemetria. No entanto, apesar de todos os progressos que facilitam as tarefas diárias, as equipas ainda necessitam de navegar por milhares de parametros e eventos que abrangem vários anos de recolha de dados, usando interfaces para esse fim e dependendo da utilização de filtros e gráficos de series temporais. A solução apresentada nesta dissertação e proposta pela VisionSpace Technologies tem como foco melhorar a eficiência operacional lidando simultaneamente com as suas complexas e extensas bases de dados.
O primeiro satélite artificial, Sputnik, foi lançado em 1957 e marcou o início de uma nova era. Simultaneamente, surgiram as operações de missão de satélites. Estas iniciam com o lançamento e terminam com desmantelamento do veículo espacial, que marca o fim da missão. A operação de satélites exige o acompanhamento e controlo de dados de telemetria, com o intuito de verificar e manter a saúde do satélite, reconfigurar e comandar o veículo, detetar, identificar e resolver anomalias e realizar o lançamento e as operações iniciais do satélite. Em 1966, o primeiro Chatbot foi criado, ELIZA, e também marcou uma nova era, de sistemas dotados de Inteligência Artificial. Tais sistemas respondem a perguntas nos mais diversos domínios, para tal interpretando linguagem humana e repondendo de forma similar. Hoje em dia, é muito comum encontrar estes sistemas e a lista de aplicações possíveis parece infindável. O objetivo da presente dissertação de mestrado consiste em desenvolver o protótipo de um Chatbot para operação de satélites. Para este proposito, criando um modelo de Processamento de Linguagem Natural (NLP) aplicado a missoões de satélites aliado a um modelo de fluxo de diálogo. O desempenho do assistente conversacional será avaliado com a sua implementação numa missão operada pela Agência Espacial Europeia (ESA), o que implica a elaboração do grafico de conhecimentos associado à base de dados da missão. Ao longo dos anos, várias ferramentas foram desenvolvidas e adicionadas aos sistemas que acompanham e controlam veículos espaciais, que colaboram com as equipas de controlo de missão, mantendo uma visão abrangente sobre a condição do satélite, acelerando a investigação de falhas, ou permitindo correlacionar séries temporais de dados de telemetria. No entanto, apesar de todos os progressos que facilitam as tarefas diárias, as equipas ainda necessitam de navegar por milhares de parametros e eventos que abrangem vários anos de recolha de dados, usando interfaces para esse fim e dependendo da utilização de filtros e gráficos de series temporais. A solução apresentada nesta dissertação e proposta pela VisionSpace Technologies tem como foco melhorar a eficiência operacional lidando simultaneamente com as suas complexas e extensas bases de dados.
Description
Keywords
Chatbot Gráfico de Conhecimento Operações de Missão de Satelites Processamento de Linguagem Natural
