Repository logo
 
No Thumbnail Available
Publication

Bifurcation phenomena in viscoelastic flows through a symmetric 1: 4 expansion

Use this identifier to reference this record.
Name:Description:Size:Format: 
ri48.pdf2.81 MBAdobe PDF Download

Advisor(s)

Abstract(s)

In this work we present an investigation of viscoelastic flow in a planar sudden expansion with expansion ratio D/d = 4. We apply the modified FENE–CR constitutive model based on the non-linear finite extensibility dumbbells (FENE) model. The governing equations were solved using a finite volume method with the high-resolution CUBISTA scheme utilised for the discretisation of the convective terms in the stress and momentum equations. Our interest here is to investigate two-dimensional steady-state solutions where, above a critical Reynolds number, stable asymmetric flow states are known to occur.We report a systematic parametric investigation, clarifying the roles of Reynolds number (0.01 < Re < 100),Weissenberg number (0 < We < 100) and the solvent viscosity ratio (0.3 < β < 1). For most simulations the extensibility parameter of the FENE model was kept constant, at a value L2 = 100, but some exploration of its effect in the range 100–500 shows a rather minor influence. The results given comprise flow patterns, streamlines and vortex sizes and intensities, and pressure and velocity distributions along the centreline (i.e. y = 0). For the Newtonian case, in agreement with previous studies, a bifurcation to asymmetric flow was observed for Reynolds numbers greater than about 36. In contrast viscoelasticity was found to stabilise the flow; setting β = 0.5 and We = 2 as typical values, resulted in symmetric flow up to a Reynolds number of about 46. We analyse these two cases in particular detail.

Description

Keywords

Planar symmetric expansion Asymmetric flow Viscoelastic fluid FENE–CR model FENE–MCR model Finite volume method

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

CC License