Repository logo
 
Publication

On the Evaluation of Energy-Efficient Deep Learning Using Stacked Autoencoders on Mobile GPUs

dc.contributor.authorFalcao, Gabriel
dc.contributor.authorAlexandre, Luís
dc.contributor.authorMarques, J.
dc.contributor.authorFrazão, Xavier
dc.contributor.authorMaria, J.
dc.date.accessioned2020-01-09T11:12:27Z
dc.date.available2020-01-09T11:12:27Z
dc.date.issued2017
dc.description.abstractOver the last years, deep learning architectures have gained attention by winning important international detection and classification challenges. However, due to high levels of energy consumption, the need to use low-power devices at acceptable throughput performance is higher than ever. This paper tries to solve this problem by introducing energy efficient deep learning based on local training and using low-power mobile GPU parallel architectures, all conveniently supported by the same high-level description of the deep network. Also, it proposes to discover the maximum dimensions that a particular type of deep learning architecture—the stacked autoencoder—can support by finding the hardware limitations of a representative group of mobile GPUs and platforms.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/PDP.2017.98pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/8152
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectParallel processingpt_PT
dc.subjectMobile GPUpt_PT
dc.subjectLow-powerpt_PT
dc.subjectEnergy savingspt_PT
dc.subjectDeep Learningpt_PT
dc.subjectStacked Autoencoderspt_PT
dc.titleOn the Evaluation of Energy-Efficient Deep Learning Using Stacked Autoencoders on Mobile GPUspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage273pt_PT
oaire.citation.startPage270pt_PT
person.familyNameFalcao
person.familyNameAlexandre
person.givenNameGabriel
person.givenNameLuís
person.identifier1483922
person.identifier.ciencia-id251F-BD6A-8DF9
person.identifier.ciencia-id2014-0F06-A3E3
person.identifier.orcid0000-0001-9805-6747
person.identifier.orcid0000-0002-5133-5025
person.identifier.ridP-9142-2014
person.identifier.ridE-8770-2013
person.identifier.scopus-author-id17433774200
person.identifier.scopus-author-id8847713100
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationf9be499e-6059-41dc-983e-5fe9022ea0db
relation.isAuthorOfPublication131ec6eb-b61a-4f27-953f-12e948a43a96
relation.isAuthorOfPublication.latestForDiscoveryf9be499e-6059-41dc-983e-5fe9022ea0db

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
pdp2017.pdf
Size:
185.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: