Repository logo
 
Publication

Numerical Study on the Influence of Tip Clearance

datacite.subject.fosEngenharia e Tecnologia::Engenharia Aeronáuticapor
dc.contributor.advisorBrojo, Francisco Miguel Ribeiro Proença
dc.contributor.authorO'Neill, Patrick Leonard
dc.date.accessioned2019-12-18T16:59:26Z
dc.date.available2019-12-18T16:59:26Z
dc.date.issued2017-7-24
dc.date.submitted2017-6-27
dc.description.abstractDue to a constant rise in costs and a continuous demand for travel from customers, airlines look to new technologies as a way of potentially reducing operational costs, such as fuel costs. With such objectives in mind, NASA and other organizations are studying and experimenting new configurations of gas turbines to determine if this could be a viable solution for the near future. Several simulations are run for an axial compressor blade in order to verify the influence in total pressure ratio and flow velocity between the No-Tip Gap model and the Tip Gap model. This will determine the impact of tip clearance on the aforementioned parameters. The CFD simulations will be carried out using FLUENT where it is possible to determine the inlet and outlet conditions of the experiment as well as other boundary conditions to properly present the problem and a realistic solution. In this study two distinct models will be simulated, No-Tip Gap and Tip Gap, each at three different rotational speeds to simulate the impact for different velocities of blade rotation and determine which model would be more beneficial for future turbines. It was concluded that the pressure along the blade using the No-Tip Gap model was higher when compared to the Tip Gap model. This could be explained by simply analysing the surface area of the blade. Being that the blade occupies the area up to the engine casing it will have a greater surface area, hence, transferring more work and having higher pressure at the compressor exit. As for the velocity, the results were reversed, meaning that a higher velocity of flow was found when using the Tip Gap model. The explanation for this higher speed could be the existence of a tip clearance, allowing the flow to pass through this area with no contact with the blade and therefore not reducing the speed of the airflow resulting in a higher outlet velocity.por
dc.description.abstractDevido a um aumento constante dos custos e ao continuado aumento na procura por parte de clientes, as companhias aéreas investigam novas tecnologias como forma de reduzir custos operacionais, como os custos de combustível. Com tais objectivos em mente, a NASA e outras organizações estão a estudar e a testar novas configurações de turbinas a gás para determinar se poderá ser uma solução viável num futuro próximo. São realizadas várias simulações numéricas para uma pá de um compressor axial, de forma a verificar a influência da razão de pressão total e velocidade de escoamento na diferença entre a folga na ponta e a ausência de folga no topo da pá. As simulações de CFD foram realizadas utilizando o FLUENT onde é possível determinar as condições de entrada e de saída da experiência bem como as condições de fronteira que permitem colocar o problema corretamente para que seja obtida uma solução realista. Nesta tese foram estudados dois modelos diferentes, No-Tip Gap (sem espaçamento) e Tip Gap (com espaçamento). Cada um destes modelos foi depois simulado com três diferentes velocidades de rotação da pá para que seja possível determinar qual o seu impacto e perceber qual seria mais benéfica em projectos futuros. Após a realização das simulações foi possível determinar que existe uma pressão maior no modelo No-Tip Gap. Esta pressão superior pode ser explicada analisando a área de superfície da pá em ambos os modelos. No modelo No-Tip Gap a pá do compressor ocupa toda a área desde a raiz até à nacele do motor, logo a sua área será superior, transferindo mais trabalho e consequentemente criando uma maior pressão à saída do que o modelo Tip Gap. No que toca à velocidade, os resultados foram o inverso. Uma maior velocidade foi obtida quando simulado o modelo Tip Gap. Esta maior velocidade pode ser explicada devido à existência do espaçamento na ponta da pá. O escoamento passando por este espaço não entra em contacto com a pá, não reduzindo a sua velocidade, resultando numa velocidade de saída mais elevada.por
dc.identifier.tid202340180
dc.identifier.urihttp://hdl.handle.net/10400.6/7963
dc.language.isoengpor
dc.subjectCfdpor
dc.subjectFluentpor
dc.subjectNasapor
dc.subjectNo-Tip Gappor
dc.subjectTip Gappor
dc.subjectTurbina A Gáspor
dc.titleNumerical Study on the Influence of Tip Clearancepor
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspor
rcaap.typemasterThesispor
thesis.degree.nameMestrado Integrado em Engenharia Aeronáuticapor

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5628_11551.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format