Repository logo
 
Publication

Demand Response-Based Operation Model in Electricity Markets With High Wind Power Penetration

dc.contributor.authorHajibandeh, Neda
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorTalari, Saber
dc.contributor.authorDehghan, Shahab
dc.contributor.authorAmjady, Nima
dc.contributor.authorMariano, S.
dc.contributor.authorCatalão, João
dc.date.accessioned2019-04-29T15:32:48Z
dc.date.available2019-04-29T15:32:48Z
dc.date.issued2019-04
dc.description.abstractThe issue of climate change has received considerable attention in recent decades. Therefore, renewable energies and especially wind units have become a central point of attention. To cope with the uncertainties of wind power generation, resulting from the intermittent nature of this kind of energy, this paper proposes a Demand Response (DR) based operation approach. In other words, unlike the previous models in the literature that considered a supplementary role for the DR, this paper introduces the main role for the DR in the operation of future electricity markets. This approach focuses on a comprehensive modeling of the Demand Response Programs (DRPs) for the operational scheduling of electricity markets, considering the uncertainties of the generation of wind turbines, aiming at increasing the network security and decreasing the operation cost. The incorporation of market-based DRPs such as Demand Bidding (DB) and Ancillary Service Demand Response (ASDR) is also considered. Two novel quantitative indices are introduced to analyze the success of DRPs regarding efficiency and wind integration. Numerical results obtained on two IEEE test systems indicate the effectiveness of the proposed model.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/TSTE.2018.2854868pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.6/7050
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectDemand responsept_PT
dc.subjectDR-based operation modelpt_PT
dc.subjectElectricity marketpt_PT
dc.subjectQuantitative indexpt_PT
dc.subjectRenewable energypt_PT
dc.subjectStochastic programmingpt_PT
dc.titleDemand Response-Based Operation Model in Electricity Markets With High Wind Power Penetrationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage930pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage918pt_PT
oaire.citation.titleIEEE Transactions on Sustainable Energypt_PT
oaire.citation.volume10pt_PT
person.familyNameShafie-khah
person.familyNameTalari
person.familyNameAmjady
person.familyNamePinto Simões Mariano
person.familyNameda Silva Catalão
person.givenNameMiadreza
person.givenNameSaber
person.givenNameNima
person.givenNameSílvio José
person.givenNameJoão Paulo
person.identifier569788
person.identifier.ciencia-id541F-E2B4-D66D
person.identifier.ciencia-idAB14-C76C-A240
person.identifier.orcid0000-0003-1691-5355
person.identifier.orcid0000-0003-1368-781X
person.identifier.orcid0000-0003-1308-1738
person.identifier.orcid0000-0002-6102-5872
person.identifier.orcid0000-0002-2105-3051
person.identifier.ridAAZ-9615-2021
person.identifier.ridN-6834-2013
person.identifier.scopus-author-id36895187100
person.identifier.scopus-author-id56102249700
person.identifier.scopus-author-id6603429143
person.identifier.scopus-author-id35612517200
rcaap.embargofctCopyright cedido à editora no momento da publicaçãopt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication5be12528-56f1-454a-8514-759174f40b8c
relation.isAuthorOfPublication5dffc41e-6788-4543-abbb-0def4ac226dc
relation.isAuthorOfPublicationedfeb0c2-0b01-4b11-b664-4847306ba244
relation.isAuthorOfPublicationcdbb9afc-4123-45ca-a946-89bafda7ab68
relation.isAuthorOfPublication8ff0a062-5d66-4b95-a44c-8a4f41c098c4
relation.isAuthorOfPublication.latestForDiscovery5be12528-56f1-454a-8514-759174f40b8c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Paper_IEEE_Sus_Enegy_publicado.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: