Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.18 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Internet traffic classification aims to identify the type of application or protocol that generated
a particular packet or stream of packets on the network. Through traffic classification,
Internet Service Providers (ISPs), governments, and network administrators can
access basic functions and several solutions, including network management, advanced
network monitoring, network auditing, and anomaly detection. Traffic classification is
essential as it ensures the Quality of Service (QoS) of the network, as well as allowing
efficient resource planning.
With the increase of encrypted or obfuscated protocol traffic on the Internet and multilayer
data encapsulation, some classical classification methods have lost interest from the
scientific community. The limitations of traditional classification methods based on port
numbers and payload inspection to classify encrypted or obfuscated Internet traffic have
led to significant research efforts focused on Machine Learning (ML) based classification
approaches using statistical features from the transport layer. In an attempt to increase
classification performance, Machine Learning strategies have gained interest from the scientific
community and have shown promise in the future of traffic classification, specially
to recognize encrypted traffic.
However, ML approach also has its own limitations, as some of these methods have a
high computational resource consumption, which limits their application when classifying
large traffic or realtime
flows. Limitations of ML application have led to the investigation
of alternative approaches, including featurebased
procedures and statistical methods. In
this sense, statistical analysis methods, such as distances and divergences, have been used
to classify traffic in large flows and in realtime.
The main objective of statistical distance is to differentiate flows and find a pattern in
traffic characteristics through statistical properties, which enable classification. Divergences
are functional expressions often related to information theory, which measure the
degree of discrepancy between any two distributions.
This thesis focuses on proposing a new methodological approach to classify encrypted
or obfuscated Internet traffic based on statistical methods that enable the evaluation of
network traffic classification performance, including the use of computational resources
in terms of CPU and memory. A set of traffic classifiers based on KullbackLeibler
and
JensenShannon
divergences, and Euclidean, Hellinger, Bhattacharyya, and Wootters distances
were proposed. The following are the four main contributions to the advancement
of scientific knowledge reported in this thesis.
First, an extensive literature review on the classification of encrypted and obfuscated Internet traffic was conducted. The results suggest that portbased
and payloadbased
methods are becoming obsolete due to the increasing use of traffic encryption and multilayer
data encapsulation. MLbased
methods are also becoming limited due to their computational
complexity. As an alternative, Support Vector Machine (SVM), which is also
an ML method, and the KolmogorovSmirnov
and Chisquared
tests can be used as reference
for statistical classification. In parallel, the possibility of using statistical methods
for Internet traffic classification has emerged in the literature, with the potential of good
results in classification without the need of large computational resources. The potential
statistical methods are Euclidean Distance, Hellinger Distance, Bhattacharyya Distance,
Wootters Distance, as well as KullbackLeibler
(KL) and JensenShannon
divergences.
Second, we present a proposal and implementation of a classifier based on SVM for P2P
multimedia traffic, comparing the results with KolmogorovSmirnov
(KS) and Chisquare
tests. The results suggest that SVM classification with Linear kernel leads to a better classification
performance than KS and Chisquare
tests, depending on the value assigned to
the Self C parameter. The SVM method with Linear kernel and suitable values for the Self
C parameter may be a good choice to identify encrypted P2P multimedia traffic on the
Internet.
Third, we present a proposal and implementation of two classifiers based on KL Divergence
and Euclidean Distance, which are compared to SVM with Linear kernel, configured
with the standard Self C parameter, showing a reduced ability to classify flows based
solely on packet sizes compared to KL and Euclidean Distance methods. KL and Euclidean
methods were able to classify all tested applications, particularly streaming and P2P,
where for almost all cases they efficiently identified them with high accuracy, with reduced
consumption of computational resources. Based on the obtained results, it can be
concluded that KL and Euclidean Distance methods are an alternative to SVM, as these
statistical approaches can operate in realtime
and do not require retraining every time a
new type of traffic emerges.
Fourth, we present a proposal and implementation of a set of classifiers for encrypted
Internet traffic, based on JensenShannon
Divergence and Hellinger, Bhattacharyya, and
Wootters Distances, with their respective results compared to those obtained with methods
based on Euclidean Distance, KL, KS, and ChiSquare.
Additionally, we present a comparative
qualitative analysis of the tested methods based on Kappa values and Receiver
Operating Characteristic (ROC) curves. The results suggest average accuracy values above
90% for all statistical methods, classified as ”almost perfect reliability” in terms of Kappa
values, with the exception of KS. This result indicates that these methods are viable options
to classify encrypted Internet traffic, especially Hellinger Distance, which showed
the best Kappa values compared to other classifiers. We conclude that the considered
statistical methods can be accurate and costeffective
in terms of computational resource
consumption to classify network traffic. Our approach was based on the classification of Internet network traffic, focusing on statistical
distances and divergences. We have shown that it is possible to classify and obtain
good results with statistical methods, balancing classification performance and the
use of computational resources in terms of CPU and memory. The validation of the proposal
supports the argument of this thesis, which proposes the implementation of statistical
methods as a viable alternative to Internet traffic classification compared to methods
based on port numbers, payload inspection, and ML.
A classificação de tráfego Internet visa identificar o tipo de aplicação ou protocolo que gerou um determinado pacote ou fluxo de pacotes na rede. Através da classificação de tráfego, Fornecedores de Serviços de Internet (ISP), governos e administradores de rede podem ter acesso às funções básicas e várias soluções, incluindo gestão da rede, monitoramento avançado de rede, auditoria de rede e deteção de anomalias. Classificar o tráfego é essencial, pois assegura a Qualidade de Serviço (QoS) da rede, além de permitir planear com eficiência o uso de recursos. Com o aumento de tráfego cifrado ou protocolo ofuscado na Internet e do encapsulamento de dados multicamadas, alguns métodos clássicos da classificação perderam interesse de investigação da comunidade científica. As limitações dos métodos tradicionais da classificação com base no número da porta e na inspeção de carga útil payload para classificar o tráfego de Internet cifrado ou ofuscado levaram a esforços significativos de investigação com foco em abordagens da classificação baseadas em técnicas de Aprendizagem Automática (ML) usando recursos estatísticos da camada de transporte. Na tentativa de aumentar o desempenho da classificação, as estratégias de Aprendizagem Automática ganharam o interesse da comunidade científica e se mostraram promissoras no futuro da classificação de tráfego, principalmente no reconhecimento de tráfego cifrado. No entanto, a abordagem em ML também têm as suas próprias limitações, pois alguns desses métodos possuem um elevado consumo de recursos computacionais, o que limita a sua aplicação para classificação de grandes fluxos de tráfego ou em tempo real. As limitações no âmbito da aplicação de ML levaram à investigação de abordagens alternativas, incluindo procedimentos baseados em características e métodos estatísticos. Neste sentido, os métodos de análise estatística, tais como distâncias e divergências, têm sido utilizados para classificar tráfego em grandes fluxos e em tempo real. A distância estatística possui como objetivo principal diferenciar os fluxos e permite encontrar um padrão nas características de tráfego através de propriedades estatísticas, que possibilitam a classificação. As divergências são expressões funcionais frequentemente relacionadas com a teoria da informação, que mede o grau de discrepância entre duas distribuições quaisquer. Esta tese focase na proposta de uma nova abordagem metodológica para classificação de tráfego cifrado ou ofuscado da Internet com base em métodos estatísticos que possibilite avaliar o desempenho da classificação de tráfego de rede, incluindo a utilização de recursos computacionais, em termos de CPU e memória. Foi proposto um conjunto de classificadores de tráfego baseados nas Divergências de KullbackLeibler e JensenShannon e Distâncias Euclidiana, Hellinger, Bhattacharyya e Wootters. A seguir resumemse os tese. Primeiro, realizámos uma ampla revisão de literatura sobre classificação de tráfego cifrado e ofuscado de Internet. Os resultados sugerem que os métodos baseados em porta e baseados em carga útil estão se tornando obsoletos em função do crescimento da utilização de cifragem de tráfego e encapsulamento de dados multicamada. O tipo de métodos baseados em ML também está se tornando limitado em função da complexidade computacional. Como alternativa, podese utilizar a Máquina de Vetor de Suporte (SVM), que também é um método de ML, e os testes de KolmogorovSmirnov e Quiquadrado como referência de comparação da classificação estatística. Em paralelo, surgiu na literatura a possibilidade de utilização de métodos estatísticos para classificação de tráfego de Internet, com potencial de bons resultados na classificação sem aporte de grandes recursos computacionais. Os métodos estatísticos potenciais são as Distâncias Euclidiana, Hellinger, Bhattacharyya e Wootters, além das Divergências de Kullback–Leibler (KL) e JensenShannon. Segundo, apresentamos uma proposta e implementação de um classificador baseado na Máquina de Vetor de Suporte (SVM) para o tráfego multimédia P2P (PeertoPeer), comparando os resultados com os testes de KolmogorovSmirnov (KS) e Quiquadrado. Os resultados sugerem que a classificação da SVM com kernel Linear conduz a um melhor desempenho da classificação do que os testes KS e Quiquadrado, dependente do valor atribuído ao parâmetro Self C. O método SVM com kernel Linear e com valores adequados para o parâmetro Self C pode ser uma boa escolha para identificar o tráfego Par a Par (P2P) multimédia cifrado na Internet. Terceiro, apresentamos uma proposta e implementação de dois classificadores baseados na Divergência de KullbackLeibler (KL) e na Distância Euclidiana, sendo comparados com a SVM com kernel Linear, configurado para o parâmestro Self C padrão, apresenta reduzida capacidade de classificar fluxos com base apenas nos tamanhos dos pacotes em relação aos métodos KL e Distância Euclidiana. Os métodos KL e Euclidiano foram capazes de classificar todas as aplicações testadas, destacandose streaming e P2P, onde para quase todos os casos foi eficiente identificálas com alta precisão, com reduzido consumo de recursos computacionais.Com base nos resultados obtidos, podese concluir que os métodos KL e Distância Euclidiana são uma alternativa à SVM, porque essas abordagens estatísticas podem operar em tempo real e não precisam de retreinamento cada vez que surge um novo tipo de tráfego. Quarto, apresentamos uma proposta e implementação de um conjunto de classificadores para o tráfego de Internet cifrado, baseados na Divergência de JensenShannon e nas Distâncias de Hellinger, Bhattacharyya e Wootters, sendo os respetivos resultados comparados com os resultados obtidos com os métodos baseados na Distância Euclidiana, KL, KS e Quiquadrado. Além disso, apresentamos uma análise qualitativa comparativa dos métodos testados com base nos valores de Kappa e Curvas Característica de Operação do Receptor (ROC). Os resultados sugerem valores médios de precisão acima de 90% para todos os métodos estatísticos, classificados como “confiabilidade quase perfeita” em valores de Kappa, com exceçãode KS. Esse resultado indica que esses métodos são opções viáveis para a classificação de tráfego cifrado da Internet, em especial a Distância de Hellinger, que apresentou os melhores resultados do valor de Kappa em comparaçãocom os demais classificadores. Concluise que os métodos estatísticos considerados podem ser precisos e económicos em termos de consumo de recursos computacionais para classificar o tráfego da rede. A nossa abordagem baseouse na classificação de tráfego de rede Internet, focando em distâncias e divergências estatísticas. Nós mostramos que é possível classificar e obter bons resultados com métodos estatísticos, equilibrando desempenho de classificação e uso de recursos computacionais em termos de CPU e memória. A validação da proposta sustenta o argumento desta tese, que propõe a implementação de métodos estatísticos como alternativa viável à classificação de tráfego da Internet em relação aos métodos com base no número da porta, na inspeção de carga útil e de ML.
A classificação de tráfego Internet visa identificar o tipo de aplicação ou protocolo que gerou um determinado pacote ou fluxo de pacotes na rede. Através da classificação de tráfego, Fornecedores de Serviços de Internet (ISP), governos e administradores de rede podem ter acesso às funções básicas e várias soluções, incluindo gestão da rede, monitoramento avançado de rede, auditoria de rede e deteção de anomalias. Classificar o tráfego é essencial, pois assegura a Qualidade de Serviço (QoS) da rede, além de permitir planear com eficiência o uso de recursos. Com o aumento de tráfego cifrado ou protocolo ofuscado na Internet e do encapsulamento de dados multicamadas, alguns métodos clássicos da classificação perderam interesse de investigação da comunidade científica. As limitações dos métodos tradicionais da classificação com base no número da porta e na inspeção de carga útil payload para classificar o tráfego de Internet cifrado ou ofuscado levaram a esforços significativos de investigação com foco em abordagens da classificação baseadas em técnicas de Aprendizagem Automática (ML) usando recursos estatísticos da camada de transporte. Na tentativa de aumentar o desempenho da classificação, as estratégias de Aprendizagem Automática ganharam o interesse da comunidade científica e se mostraram promissoras no futuro da classificação de tráfego, principalmente no reconhecimento de tráfego cifrado. No entanto, a abordagem em ML também têm as suas próprias limitações, pois alguns desses métodos possuem um elevado consumo de recursos computacionais, o que limita a sua aplicação para classificação de grandes fluxos de tráfego ou em tempo real. As limitações no âmbito da aplicação de ML levaram à investigação de abordagens alternativas, incluindo procedimentos baseados em características e métodos estatísticos. Neste sentido, os métodos de análise estatística, tais como distâncias e divergências, têm sido utilizados para classificar tráfego em grandes fluxos e em tempo real. A distância estatística possui como objetivo principal diferenciar os fluxos e permite encontrar um padrão nas características de tráfego através de propriedades estatísticas, que possibilitam a classificação. As divergências são expressões funcionais frequentemente relacionadas com a teoria da informação, que mede o grau de discrepância entre duas distribuições quaisquer. Esta tese focase na proposta de uma nova abordagem metodológica para classificação de tráfego cifrado ou ofuscado da Internet com base em métodos estatísticos que possibilite avaliar o desempenho da classificação de tráfego de rede, incluindo a utilização de recursos computacionais, em termos de CPU e memória. Foi proposto um conjunto de classificadores de tráfego baseados nas Divergências de KullbackLeibler e JensenShannon e Distâncias Euclidiana, Hellinger, Bhattacharyya e Wootters. A seguir resumemse os tese. Primeiro, realizámos uma ampla revisão de literatura sobre classificação de tráfego cifrado e ofuscado de Internet. Os resultados sugerem que os métodos baseados em porta e baseados em carga útil estão se tornando obsoletos em função do crescimento da utilização de cifragem de tráfego e encapsulamento de dados multicamada. O tipo de métodos baseados em ML também está se tornando limitado em função da complexidade computacional. Como alternativa, podese utilizar a Máquina de Vetor de Suporte (SVM), que também é um método de ML, e os testes de KolmogorovSmirnov e Quiquadrado como referência de comparação da classificação estatística. Em paralelo, surgiu na literatura a possibilidade de utilização de métodos estatísticos para classificação de tráfego de Internet, com potencial de bons resultados na classificação sem aporte de grandes recursos computacionais. Os métodos estatísticos potenciais são as Distâncias Euclidiana, Hellinger, Bhattacharyya e Wootters, além das Divergências de Kullback–Leibler (KL) e JensenShannon. Segundo, apresentamos uma proposta e implementação de um classificador baseado na Máquina de Vetor de Suporte (SVM) para o tráfego multimédia P2P (PeertoPeer), comparando os resultados com os testes de KolmogorovSmirnov (KS) e Quiquadrado. Os resultados sugerem que a classificação da SVM com kernel Linear conduz a um melhor desempenho da classificação do que os testes KS e Quiquadrado, dependente do valor atribuído ao parâmetro Self C. O método SVM com kernel Linear e com valores adequados para o parâmetro Self C pode ser uma boa escolha para identificar o tráfego Par a Par (P2P) multimédia cifrado na Internet. Terceiro, apresentamos uma proposta e implementação de dois classificadores baseados na Divergência de KullbackLeibler (KL) e na Distância Euclidiana, sendo comparados com a SVM com kernel Linear, configurado para o parâmestro Self C padrão, apresenta reduzida capacidade de classificar fluxos com base apenas nos tamanhos dos pacotes em relação aos métodos KL e Distância Euclidiana. Os métodos KL e Euclidiano foram capazes de classificar todas as aplicações testadas, destacandose streaming e P2P, onde para quase todos os casos foi eficiente identificálas com alta precisão, com reduzido consumo de recursos computacionais.Com base nos resultados obtidos, podese concluir que os métodos KL e Distância Euclidiana são uma alternativa à SVM, porque essas abordagens estatísticas podem operar em tempo real e não precisam de retreinamento cada vez que surge um novo tipo de tráfego. Quarto, apresentamos uma proposta e implementação de um conjunto de classificadores para o tráfego de Internet cifrado, baseados na Divergência de JensenShannon e nas Distâncias de Hellinger, Bhattacharyya e Wootters, sendo os respetivos resultados comparados com os resultados obtidos com os métodos baseados na Distância Euclidiana, KL, KS e Quiquadrado. Além disso, apresentamos uma análise qualitativa comparativa dos métodos testados com base nos valores de Kappa e Curvas Característica de Operação do Receptor (ROC). Os resultados sugerem valores médios de precisão acima de 90% para todos os métodos estatísticos, classificados como “confiabilidade quase perfeita” em valores de Kappa, com exceçãode KS. Esse resultado indica que esses métodos são opções viáveis para a classificação de tráfego cifrado da Internet, em especial a Distância de Hellinger, que apresentou os melhores resultados do valor de Kappa em comparaçãocom os demais classificadores. Concluise que os métodos estatísticos considerados podem ser precisos e económicos em termos de consumo de recursos computacionais para classificar o tráfego da rede. A nossa abordagem baseouse na classificação de tráfego de rede Internet, focando em distâncias e divergências estatísticas. Nós mostramos que é possível classificar e obter bons resultados com métodos estatísticos, equilibrando desempenho de classificação e uso de recursos computacionais em termos de CPU e memória. A validação da proposta sustenta o argumento desta tese, que propõe a implementação de métodos estatísticos como alternativa viável à classificação de tráfego da Internet em relação aos métodos com base no número da porta, na inspeção de carga útil e de ML.
Description
Keywords
Classificação de tráfego Tráfego de Internet cifrado Divergência de KullbackLeibler Distância Euclidiana Máquina de Vetor de Suporte Métodos estatísticos Distribuição Distância estatística Divergência estatística Streaming de vídeo Par a Par Divergência de JensenShannon Distância de Hellinger Distância de Bhattacharyya Distância de Wootters